
4.1 Data Transfer Instructions
4.1.1 Introduction
4.1.2 Operand Types
4.1.3 Direct Memory Operands
4.1.4 MOV Instruction
4.1.5 Zero/Sign Extension of Integers
4.1.6 LAHF and SAHF Instructions
4.1.7 XCHG Instruction
4.1.8 Direct-Offset Operands
4.1.9 Example Program (Moves)

4.2 Addition and Subtraction
4.2.1 INC and DEC Instructions
4.2.2 ADD Instruction
4.2.3 SUB Instruction
4.2.4 NEG Instruction
4.2.5 Implementing Arithmetic Expressions

Lecture No.8

Lecture Outlines

1

4.1 Data Transfer Instructions

4.1.1 Introduction

When programming in languages like Java or C++, it’s easy for beginners to be annoyed when
the compilers generate lots of syntax error messages. Compilers perform strict type checking in
order to help you avoid possible errors such as mismatching variables and data. Assemblers, on
the other hand, let you do just about anything you want, as long as the processor’s instruction set
can do what you ask. In other words, assembly language forces you to pay attention to data stor-
age and machine-specific details. You must understand the processor’s limitations when you
write assembly language code. As it happens, x86 processors have what is commonly known as
a complex instruction set, so they offer a lot of ways of doing things.

4.1.2 Operand Types
Chapter 3 introduced x86 instruction formats:

[label:] mnemonic [operands][; comment]

Instructions can have zero, one, two, or three operands. Here, we omit the label and comment
fields for clarity:

mnemonic
mnemonic [destination]
mnemonic [destination],[source]
mnemonic [destination],[source-1],[source-2]

There are three basic types of operands:

• Immediate—uses a numeric literal expression
• Register—uses a named register in the CPU
• Memory—references a memory location

Table 4-1 describes the standard operand types. It uses a simple notation for operands (in 32-bit
mode) freely adapted from the Intel manuals. We will use it from this point on to describe the
syntax of individual instructions.

4.1.3 Direct Memory Operands
Variable names are references to offsets within the data segment. For example, the following
declaration for a variable named var1 says that its size attribute is byte and it contains the value
10 hexadecimal:

2

.data
var1 BYTE 10h

We can write instructions that dereference (look up) memory operands using their addresses.
Suppose var1 were located at offset 10400h. The following instruction copies its value into the
AL register:

mov al var1

It would be assembled into the following machine instruction:

A0 00010400

The first byte in the machine instruction is the operation code (known as the opcode). The
remaining part is the 32-bit hexadecimal address of var1. Although it might be possible to write
programs using only numeric addresses, symbolic names such as var1 make it easier to refer-
ence memory.

Table 4-1 Instruction Operand Notation, 32-Bit Mode.

Operand Description

reg8 8-bit general-purpose register: AH, AL, BH, BL, CH, CL, DH, DL

reg16 16-bit general-purpose register: AX, BX, CX, DX, SI, DI, SP, BP

reg32 32-bit general-purpose register: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP

reg Any general-purpose register

sreg 16-bit segment register: CS, DS, SS, ES, FS, GS

imm 8-, 16-, or 32-bit immediate value

imm8 8-bit immediate byte value

imm16 16-bit immediate word value

imm32 32-bit immediate doubleword value

reg/mem8 8-bit operand, which can be an 8-bit general register or memory byte

reg/mem16 16-bit operand, which can be a 16-bit general register or memory word

reg/mem32 32-bit operand, which can be a 32-bit general register or memory doubleword

mem An 8-, 16-, or 32-bit memory operand

Alternative Notation. Some programmers prefer to use the following notation with direct oper-
ands because the brackets imply a dereference operation:

mov al,[var1]

MASM permits this notation, so you can use it in your own programs if you want. Because so
many programs (including those from Microsoft) are printed without the brackets, we will only
use them in this book when an arithmetic expression is involved:

mov al,[var1 + 5]

(This is called a direct-offset operand, a subject discussed at length in Section 4.1.8.)

3

4.1.4 MOV Instruction
The MOV instruction copies data from a source operand to a destination operand. Known as a
data transfer instruction, it is used in virtually every program. Its basic format shows that the
first operand is the destination and the second operand is the source:

MOV destination,source

The destination operand’s contents change, but the source operand is unchanged. The right to
left movement of data is similar to the assignment statement in C++ or Java:

dest = source;

In nearly all assembly language instructions, the left-hand operand is the destination and the right-
hand operand is the source. MOV is very flexible in its use of operands, as long as the following
rules are observed:

• Both operands must be the same size.
• Both operands cannot be memory operands.
• The instruction pointer register (IP, EIP, or RIP) cannot be a destination operand.

Here is a list of the standard MOV instruction formats:

MOV reg,reg
MOV mem,reg
MOV reg,mem
MOV mem,imm
MOV reg,imm

Memory to Memory A single MOV instruction cannot be used to move data directly from
one memory location to another. Instead, you must move the source operand’s value to a register
before assigning its value to a memory operand:

.data
var1 WORD ?
var2 WORD ?
.code
mov ax,var1
mov var2,ax

You must consider the minimum number of bytes required by an integer constant when copying
it to a variable or register. For unsigned integer constant sizes, refer to Table 1-4 in Chapter 1. For
signed integer constants, refer to Table 1-7.

Overlapping Values
The following code example shows how the same 32-bit register can be modified using differently sized
data. When oneWord is moved to AX, it overwrites the existing value of AL. When oneDword is
moved to EAX, it overwrites AX. Finally, when 0 is moved to AX, it overwrites the lower half of EAX.

.data
oneByte BYTE 78h
oneWord WORD 1234h
oneDword DWORD 12345678h

4

.code
mov eax,0 ; EAX = 00000000h
mov al,oneByte ; EAX = 00000078h
mov ax,oneWord ; EAX = 00001234h
mov eax,oneDword ; EAX = 12345678h
mov ax,0 ; EAX = 12340000h

4.1.5 Zero/Sign Extension of Integers

Copying Smaller Values to Larger Ones
Although MOV cannot directly copy data from a smaller operand to a larger one, programmers
can create workarounds. Suppose count (unsigned, 16 bits) must be moved to ECX (32 bits). We
can set ECX to zero and move count to CX:

.data
count WORD 1
.code
mov ecx,0
mov cx,count

What happens if we try the same approach with a signed integer equal to �16?

.data
signedVal SWORD -16 ; FFF0h (-16)
.code
mov ecx,0
mov cx,signedVal ; ECX = 0000FFF0h (+65,520)

The value in ECX (�65,520) is completely different from �16. On the other hand, if we had
filled ECX first with FFFFFFFFh and then copied signedVal to CX, the final value would have
been correct:

mov ecx,0FFFFFFFFh
mov cx,signedVal ; ECX = FFFFFFF0h (-16)

The effective result of this example was to use the highest bit of the source operand (1) to fill
the upper 16 bits of the destination operand, ECX. This technique is called sign extension. Of
course, we cannot always assume that the highest bit of the source is a 1. Fortunately, the engi-
neers at Intel anticipated this problem when designing the instruction set and introduced the
MOVZX and MOVSX instructions to deal with both unsigned and signed integers.

MOVZX Instruction
The MOVZX instruction (move with zero-extend) copies the contents of a source operand into a
destination operand and zero-extends the value to 16 or 32 bits. This instruction is only used
with unsigned integers. There are three variants:

MOVZX reg32,reg/mem8
MOVZX reg32,reg/mem16
MOVZX reg16,reg/mem8

5

(Operand notation was explained in Table 4-1.) In each of the three variants, the first operand (a
register) is the destination and the second is the source. Notice that the source operand cannot be
a constant. The following example zero-extends binary 10001111 into AX:

.data
byteVal BYTE 10001111b
.code
movzx ax,byteVal ; AX = 0000000010001111b

Figure 4-1 shows how the source operand is zero-extended into the 16-bit destination.

Figure 4–1 Using MOVZX to copy a byte into a 16-bit destination.

The following examples use registers for all operands, showing all the size variations:

mov bx,0A69Bh
movzx eax,bx ; EAX = 0000A69Bh
movzx edx,bl ; EDX = 0000009Bh
movzx cx,bl ; CX = 009Bh

The following examples use memory operands for the source and produce the same results:

.data
byte1 BYTE 9Bh
word1 WORD 0A69Bh
.code
movzx eax,word1 ; EAX = 0000A69Bh
movzx edx,byte1 ; EDX = 0000009Bh
movzx cx,byte1 ; CX = 009Bh

MOVSX Instruction
The MOVSX instruction (move with sign-extend) copies the contents of a source operand into a
destination operand and sign-extends the value to 16 or 32 bits. This instruction is only used
with signed integers. There are three variants:

MOVSX reg32,reg/mem8
MOVSX reg32,reg/mem16
MOVSX reg16,reg/mem8

An operand is sign-extended by taking the smaller operand’s highest bit and repeating (repli-
cating) the bit throughout the extended bits in the destination operand. The following example
sign-extends binary 10001111b into AX:

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Source

Destination0 0 0 0 0 0 0 0

0

6

.data
byteVal BYTE 10001111b
.code
movsx ax,byteVal ; AX = 1111111110001111b

The lowest 8 bits are copied as in Figure 4-2. The highest bit of the source is copied into each of
the upper 8 bit positions of the destination.

A hexadecimal constant has its highest bit set if its most significant hexadecimal digit is
greater than 7. In the following example, the hexadecimal value moved to BX is A69B, so the
leading “A” digit tells us that the highest bit is set. (The leading zero appearing before A69B is
just a notational convenience so the assembler does not mistake the constant for the name of an
identifier.)

mov bx,0A69Bh
movsx eax,bx ; EAX = FFFFA69Bh
movsx edx,bl ; EDX = FFFFFF9Bh
movsx cx,bl ; CX = FF9Bh

Figure 4–2 Using MOVSX to copy a byte into a 16-bit destination.

4.1.6 LAHF and SAHF Instructions
The LAHF (load status flags into AH) instruction copies the low byte of the EFLAGS register
into AH. The following flags are copied: Sign, Zero, Auxiliary Carry, Parity, and Carry. Using
this instruction, you can easily save a copy of the flags in a variable for safekeeping:

.data
saveflags BYTE ?
.code
lahf ; load flags into AH
mov saveflags,ah ; save them in a variable

The SAHF (store AH into status flags) instruction copies AH into the low byte of the
EFLAGS (or RFLAGS) register. For example, you can retrieve the values of flags saved earlier
in a variable:

mov ah,saveflags ; load saved flags into AH
sahf ; copy into Flags register

1 0 0 0 1 1 1 1

(Copy 8 bits)

1 0 0 0 1 1 1 1

Source

Destination1 1 1 1 1 1 1 1

7

4.1.7 XCHG Instruction
The XCHG (exchange data) instruction exchanges the contents of two operands. There are three
variants:

XCHG reg,reg
XCHG reg,mem
XCHG mem,reg

The rules for operands in the XCHG instruction are the same as those for the MOV instruction
(Section 4.1.4), except that XCHG does not accept immediate operands. In array sorting
applications, XCHG provides a simple way to exchange two array elements. Here are a few
examples using XCHG:

xchg ax,bx ; exchange 16-bit regs
xchg ah,al ; exchange 8-bit regs
xchg var1,bx ; exchange 16-bit mem op with BX
xchg eax,ebx ; exchange 32-bit regs

To exchange two memory operands, use a register as a temporary container and combine MOV
with XCHG:

mov ax,val1
xchg ax,val2
mov val1,ax

4.1.8 Direct-Offset Operands
You can add a displacement to the name of a variable, creating a direct-offset operand. This lets
you access memory locations that may not have explicit labels. Let’s begin with an array of
bytes named arrayB:

arrayB BYTE 10h,20h,30h,40h,50h

If we use MOV with arrayB as the source operand, we automatically move the first byte in the
array:

mov al,arrayB ; AL = 10h

We can access the second byte in the array by adding 1 to the offset of arrayB:

mov al,[arrayB+1] ; AL = 20h

The third byte is accessed by adding 2:

mov al,[arrayB+2] ; AL = 30h

An expression such as arrayB�1 produces what is called an effective address by adding a constant
to the variable’s offset. Surrounding an effective address with brackets makes it clear that the expres-
sion is dereferenced to obtain the contents of memory at the address. The assembler does not require
you to surround address expressions with brackets, but we highly recommend their use for clarity.

MASM has no built-in range checking for effective addresses. In the following example,
assuming arrayB holds five bytes, the instruction retrieves a byte of memory outside the array.
The result is a sneaky logic bug, so be extra careful when checking array references:

mov al,[arrayB+20] ; AL = ??

8

Word and Doubleword Arrays In an array of 16-bit words, the offset of each array element
is 2 bytes beyond the previous one. That is why we add 2 to ArrayW in the next example to
reach the second element:

.data
arrayW WORD 100h,200h,300h
.code
mov ax,arrayW ; AX = 100h
mov ax,[arrayW+2] ; AX = 200h

Similarly, the second element in a doubleword array is 4 bytes beyond the first one:

.data
arrayD DWORD 10000h,20000h
.code
mov eax,arrayD ; EAX = 10000h
mov eax,[arrayD+4] ; EAX = 20000h

4.1.9 Example Program (Moves)
Let’s combine all the instructions we’ve covered so far in this chapter, including MOV, XCHG,
MOVSX, and MOVDX, to show how bytes, words, and doublewords are affected. We will also
include some direct-offset operands.

; Data Transfer Examples (Moves.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO,dwExitCode:DWORD
.data
val1 WORD 1000h
val2 WORD 2000h
arrayB BYTE 10h,20h,30h,40h,50h
arrayW WORD 100h,200h,300h
arrayD DWORD 10000h,20000h

.code
main PROC

; Demonstrating MOVZX instruction:
mov bx,0A69Bh
movzx eax,bx ; EAX = 0000A69Bh
movzx edx,bl ; EDX = 0000009Bh
movzx cx,bl ; CX = 009Bh

; Demonstrating MOVSX instruction:
mov bx,0A69Bh
movsx eax,bx ; EAX = FFFFA69Bh
movsx edx,bl ; EDX = FFFFFF9Bh
mov bl,7Bh
movsx cx,bl ; CX = 007Bh

; Memory-to-memory exchange:
mov ax,val1 ; AX = 1000h

9

xchg ax,val2 ; AX=2000h, val2=1000h
mov val1,ax ; val1 = 2000h

; Direct-Offset Addressing (byte array):
mov al,arrayB ; AL = 10h
mov al,[arrayB+1] ; AL = 20h
mov al,[arrayB+2] ; AL = 30h

; Direct-Offset Addressing (word array):
mov ax,arrayW ; AX = 100h
mov ax,[arrayW+2] ; AX = 200h

; Direct-Offset Addressing (doubleword array):
mov eax,arrayD ; EAX = 10000h
mov eax,[arrayD+4] ; EAX = 20000h
mov eax,[arrayD+4] ; EAX = 20000h

INVOKE ExitProcess,0
main ENDP
END main

This program generates no screen output, but you can (and should) run it using a debugger.

Displaying CPU Flags in the Visual Studio Debugger
To display the CPU status flags during a debugging session, select Windows from the Debug
menu, then select Registers from the Windows menu. Inside the Registers window, right-click
and select Flags from the dropdown list. You must be currently debugging a program in order to
see these menu options. The following table identifies the flag symbols used inside the Registers
window:

Each flag is assigned a value of 0 (clear) or 1 (set). Here’s an example:

As you step through your code during a debugging session, each flag displays in red when an
instruction modifies the flag’s value. You can learn how instructions affect the flags by stepping
through instructions and keeping an eye on the changing values of the flags.

Flag
Name Overflow Direction Interrupt Sign Zero

Aux
Carry Parity Carry

Symbol OV UP EI PL ZR AC PE CY

� �OV 10 UP �0 EI
� �PL 00 ZR �1 AC

� �PE 1 CY 0

10

4.2 Addition and Subtraction
Arithmetic is a surprisingly big topic in assembly language! This chapter will focus on addition
and subtraction. Then we will talk about multiplication and division later in Chapter 7. Then
we’ll switch over to floating point arithmetic in Chapter 12.

Let’s start with the easiest and most efficient instructions of them all: INC (increment) and
DEC (decrement), which add 1 and subtract 1. Then we will move on to the ADD, SUB, and
NEG (negate) instructions, which offer more possibilities. Last of all, we will get into a discus-
sion about how the CPU status flags (Carry, Sign, Zero, etc.) are affected by arithmetic instruc-
tions. Remember, assembly language is all about the details.

4.2.1 INC and DEC Instructions
The INC (increment) and DEC (decrement) instructions, respectively, add 1 and subtract 1 from
a register or memory operand. The syntax is

INC reg/mem
DEC reg/mem

Following are some examples:

.data
myWord WORD 1000h
.code
inc myWord ; myWord = 1001h
mov bx,myWord
dec bx ; BX = 1000h

The Overflow, Sign, Zero, Auxiliary Carry, and Parity flags are changed according to the
value of the destination operand. The INC and DEC instructions do not affect the Carry flag
(which is something of a surprise).

4.2.2 ADD Instruction
The ADD instruction adds a source operand to a destination operand of the same size. The syntax is

ADD dest,source

Source is unchanged by the operation, and the sum is stored in the destination operand. The set
of possible operands is the same as for the MOV instruction (Section 4.1.4). Here is a short code
example that adds two 32-bit integers:

.data
var1 DWORD 10000h
var2 DWORD 20000h
.code
mov eax,var1 ; EAX = 10000h
add eax,var2 ; EAX = 30000h

11

Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value that is placed in the destination operand. We will explain how the flags work in
Section 4.2.6.

4.2.3 SUB Instruction
The SUB instruction subtracts a source operand from a destination operand. The set of pos-
sible operands is the same as for the ADD and MOV instructions. The syntax is

SUB dest,source

Here is a short code example that subtracts two 32-bit integers:

.data
var1 DWORD 30000h
var2 DWORD 10000h
.code
mov eax,var1 ; EAX = 30000h
sub eax,var2 ; EAX = 20000h

Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value that is placed in the destination operand.

4.2.4 NEG Instruction
The NEG (negate) instruction reverses the sign of a number by converting the number to its
two’s complement. The following operands are permitted:

NEG reg
NEG mem

(Recall that the two’s complement of a number can be found by reversing all the bits in the desti-
nation operand and adding 1.)

Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value that is placed in the destination operand.

4.2.5 Implementing Arithmetic Expressions
Armed with the ADD, SUB, and NEG instructions, you have the means to implement arithmetic
expressions involving addition, subtraction, and negation in assembly language. In other words,
you can simulate what a C++ compiler might do when a statement such as this:

Rval = -Xval + (Yval - Zval);

Let’s see how the sample statement would be implemented in assembly language. The following
signed 32-bit variables will be used:

Rval SDWORD ?
Xval SDWORD 26
Yval SDWORD 30
Zval SDWORD 40

12

When translating an expression, evaluate each term separately and combine the terms at the end.
First, we negate a copy of Xval and store it in a register:

; first term: -Xval
mov eax,Xval
neg eax ; EAX = -26

Then Yval is copied to a register and Zval is subtracted:

; second term: (Yval - Zval)
mov ebx,Yval
sub ebx,Zval ; EBX = -10

Finally, the two terms (in EAX and EBX) are added:

; add the terms and store:
add eax,ebx
mov Rval,eax ; -36

