
1

	
Characteristics of Memory Systems
The Memory Hierarchy

	

Lecture No.8

Lecture Outlines

4.1 COMPUTER MEMORY SYSTEM OVERVIEW

Characteristics of Memory Systems

The complex subject of computer memory is made more manageable if we classify
memory systems according to their key characteristics. The most important of these
are listed in Table 4.1.

The term location in Table 4.1 refers to whether memory is internal or exter-
nal to the computer. Internal memory is often equated with main memory, but there
are other forms of internal memory. The processor requires its own local memory,
in the form of registers (e.g., see Figure 2.3). Further, as we will see, the control unit
portion of the processor may also require its own internal memory. We will defer
discussion of these latter two types of internal memory to later chapters. Cache is
another form of internal memory. External memory consists of peripheral storage
devices, such as disk and tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this
is typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word
lengths are 8, 16, and 32 bits. External memory capacity is typically expressed in
terms of bytes.

2

A related concept is the unit of transfer. For internal memory, the unit
of transfer is equal to the number of electrical lines into and out of the memory
module. This may be equal to the word length, but is often larger, such as 64, 128, or
256 bits. To clarify this point, consider three related concepts for internal memory:

■ Word: The “natural” unit of organization of memory. The size of a word is typically
equal to the number of bits used to represent an integer and to the instruction
length. Unfortunately, there are many exceptions. For example, the CRAY C90
(an older model CRAY supercomputer) has a 64-bit word length but uses a 46-bit
integer representation. The Intel x86 architecture has a wide variety of instruction
lengths, expressed as multiples of bytes, and a word size of 32 bits.

■ Addressable units: In some systems, the addressable unit is the word. How-
ever, many systems allow addressing at the byte level. In any case, the rela-
tionship between the length in bits A of an address and the number N of
addressable units is 2A = N.

■ Unit of transfer: For main memory, this is the number of bits read out of or
written into memory at a time. The unit of transfer need not equal a word or
an addressable unit. For external memory, data are often transferred in much
larger units than a word, and these are referred to as blocks.

Another distinction among memory types is the method of accessing units of
data. These include the following:

■ Sequential access: Memory is organized into units of data, called records.
Access must be made in a specific linear sequence. Stored addressing infor-
mation is used to separate records and assist in the retrieval process. A shared
read–​write mechanism is used, and this must be moved from its current loca-
tion to the desired location, passing and rejecting each intermediate record.
Thus, the time to access an arbitrary record is highly variable. Tape units, dis-
cussed in Chapter 6, are sequential access.

■ Direct access: As with sequential access, direct access involves a shared read–
write mechanism. However, individual blocks or records have a unique

Table 4.1 Key Characteristics of Computer Memory Systems

Location
Internal (e.g., processor registers, cache, main
 memory)
External (e.g., optical disks, magnetic

 disks, tapes)
Capacity

Number of words
 Number of bytes
Unit of Transfer

 Word
Block

Access Method
 Sequential
Direct
Random
Associative

Performance
 Access time
Cycle time
Transfer rate

Physical Type
 Semiconductor
Magnetic
Optical

 Magneto- optical
Physical Characteristics

 Volatile/nonvolatile
 Erasable/nonerasable
Organization
 Memory modules

3

address based on physical location. Access is accomplished by direct access
to reach a general vicinity plus sequential searching, counting, or waiting to
reach the final location. Again, access time is variable. Disk units, discussed in
Chapter 6, are direct access.

■ Random access: Each addressable location in memory has a unique, physically
wired-​in addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior accesses and is constant. Thus, any location
can be selected at random and directly addressed and accessed. Main memory
and some cache systems are random access.

■ Associative: This is a random access type of memory that enables one to make
a comparison of desired bit locations within a word for a specified match, and
to do this for all words simultaneously. Thus, a word is retrieved based on a
portion of its contents rather than its address. As with ordinary random-​access
memory, each location has its own addressing mechanism, and retrieval time
is constant independent of location or prior access patterns. Cache memories
may employ associative access.

From a user’s point of view, the two most important characteristics of memory are
capacity and performance. Three performance parameters are used:

■ Access time (latency): For random- access memory, this is the time it takes
to perform a read or write operation, that is, the time from the instant that
an address is presented to the memory to the instant that data have been
stored or made available for use. For non-​random-​access memory, access
time is the time it takes to position the read–​write mechanism at the desired
location.

■ Memory cycle time: This concept is primarily applied to random- access memory
and consists of the access time plus any additional time required before a second
access can commence. This additional time may be required for transients to die
out on signal lines or to regenerate data if they are read destructively. Note that
memory cycle time is concerned with the system bus, not the processor.

■ Transfer rate: This is the rate at which data can be transferred into or out of
a memory unit. For random-​access memory, it is equal to 1/(cycle time). For
non-​random-​access memory, the following relationship holds:

Tn = TA +
n
R

(4.1)

where

  Tn = Average time to read or write n bits

TA = Average access time

  n = Number of bits

R = Transfer rate, in bits per second (bps)

A variety of physical types of memory have been employed. The most com-
mon today are semiconductor memory, magnetic surface memory, used for disk and
tape, and optical and magneto-​optical.

4

Several physical characteristics of data storage are important. In a volatile
memory, information decays naturally or is lost when electrical power is switched
off. In a nonvolatile memory, information once recorded remains without deterio-
ration until deliberately changed; no electrical power is needed to retain informa-
tion. Magnetic-​surface memories are nonvolatile. Semiconductor memory (memory
on integrated circuits) may be either volatile or nonvolatile. Nonerasable memory
cannot be altered, except by destroying the storage unit. Semiconductor memory of
this type is known as read-​only memory (ROM). Of necessity, a practical nonerasa-
ble memory must also be nonvolatile.

For random-​access memory, the organization is a key design issue. In this con-
text, organization refers to the physical arrangement of bits to form words. The
obvious arrangement is not always used, as is explained in Chapter 5.

The Memory Hierarchy

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical system, the cost of memory must
be reasonable in relationship to other components.

As might be expected, there is a trade-​off among the three key characteristics
of memory: capacity, access time, and cost. A variety of technologies are used to
implement memory systems, and across this spectrum of technologies, the following
relationships hold:

■ Faster access time, greater cost per bit;
■ Greater capacity, smaller cost per bit;
■ Greater capacity, slower access time.

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-​capacity memory, both because the cap-
acity is needed and because the cost per bit is low. However, to meet performance
requirements, the designer needs to use expensive, relatively lower-​capacity mem-
ories with short access times.

The way out of this dilemma is not to rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 4.1. As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit;

b. Increasing capacity;

c. Increasing access time;

d. Decreasing frequency of access of the memory by the processor.

Thus, smaller, more expensive, faster memories are supplemented by
larger, cheaper, slower memories. The key to the success of this organization

5

is item (d): decreasing frequency of access. We examine this concept in greater
detail when we discuss the cache, later in this chapter, and virtual memory in
Chapter 8. A brief explanation is provided at this point.

The use of two levels of memory to reduce average access time works in prin-
ciple, but only if conditions (a) through (d) apply. By employing a variety of tech-
nologies, a spectrum of memory systems exists that satisfies conditions (a) through
(c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENN68]. During the course of execution of a program, memory ref-
erences by the processor, for both instructions and data, tend to cluster. Programs
typically contain a number of iterative loops and subroutines. Once a loop or sub-
routine is entered, there are repeated references to a small set of instructions. Simi-
larly, operations on tables and arrays involve access to a clustered set of data words.
Over a long period of time, the clusters in use change, but over a short period of
time, the processor is primarily working with fixed clusters of memory references.

Inboardmemory

Outboardstorage

Off-linestorage

Main

memory

Magnetic disk

CD-ROM

CD-RW

DVD-RW

DVD-RAM

Blu-Ray

Magnetic tape

Cache

Reg-

iste
rs

Figure 4.1 The Memory Hierarchy

6

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that
of the level above. Consider the two-​level example already presented. Let level 2

In our example, suppose 95% of the memory accesses are found in level 1. Then the
average time to access a word can be expressed as

(0.95)(0.01 ms) + (0.05)(0.01 ms + 0.1 ms) = 0.0095 + 0.0055 = 0.015 ms

The average access time is much closer to 0.01 ms than to 0.1 ms, as desired.

0

T1

T1 + T2

T2

1

A
ve

ra
ge

 a
cc

es
s

ti
m

e

Fraction of accesses involving only level 1 (hit ratio)
Figure 4.2 Performance of Accesses Involving only
Level 1 (hit ratio)

 EXAMPLE 4.1 Suppose that the processor has access to two levels of memory. Level 1
contains 1000 words and has an access time of 0.01 ms; level 2 contains 100,000 words and
has an access time of 0.1 ms. Assume that if a word to be accessed is in level 1, then the
processor accesses it directly. If it is in level 2, then the word is first transferred to level 1
and then accessed by the processor. For simplicity, we ignore the time required for the pro-
cessor to determine whether the word is in level 1 or level 2. Figure 4.2 shows the general
shape of the curve that covers this situation. The figure shows the average access time to
a two- level memory as a function of the hit ratio H, where H is defined as the fraction of
all memory accesses that are found in the faster memory (e.g., the cache), T1 is the access
time to level 1, and T2 is the access time to level 2. As can be seen, for high percentages
of level 1 access, the average total access time is much closer to that of level 1 than that
of level 2.

7

memory contain all program instructions and data. The current clusters can be tem-
porarily placed in level 1. From time to time, one of the clusters in level 1 will have
to be swapped back to level 2 to make room for a new cluster coming in to level 1.
On average, however, most references will be to instructions and data contained in
level 1.

This principle can be applied across more than two levels of memory, as sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, a
processor will contain a few dozen such registers, although some machines contain
hundreds of registers. Main memory is the principal internal memory system of the
computer. Each location in main memory has a unique address. Main memory is usu-
ally extended with a higher-​speed, smaller cache. The cache is not usually visible to
the programmer or, indeed, to the processor. It is a device for staging the movement
of data between main memory and processor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable magnetic disk, tape,
and optical storage. External, nonvolatile memory is also referred to as secondary
memory or auxiliary memory. These are used to store program and data files and
are usually visible to the programmer only in terms of files and records, as opposed
to individual bytes or words. Disk is also used to provide an extension to main mem-
ory known as virtual memory, which is discussed in Chapter 8.

Other forms of memory may be included in the hierarchy. For example, large
IBM mainframes include a form of internal memory known as expanded storage.
This uses a semiconductor technology that is slower and less expensive than that
of main memory. Strictly speaking, this memory does not fit into the hierarchy but
is a side branch: Data can be moved between main memory and expanded storage
but not between expanded storage and external memory. Other forms of secondary
memory include optical and magneto- optical disks. Finally, additional levels can be
effectively added to the hierarchy in software. A portion of main memory can be
used as a buffer to hold data temporarily that is to be read out to disk. Such a tech-
nique, sometimes referred to as a disk cache, improves performance in two ways:

■ Disk writes are clustered. Instead of many small transfers of data, we have
a few large transfers of data. This improves disk performance and minimizes
processor involvement.

■ Some data destined for write- out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.

Appendix 4A examines the performance implications of multilevel memory
structures.

8

4.2 CACHE MEMORY PRINCIPLES

Cache memory is designed to combine the memory access time of expensive, high-​
speed memory combined with the large memory size of less expensive, lower-​speed
memory. The concept is illustrated in Figure 4.3a. There is a relatively large and slow
main memory together with a smaller, faster cache memory. The cache contains a
copy of portions of main memory. When the processor attempts to read a word of
memory, a check is made to determine if the word is in the cache. If so, the word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of words, is read into the cache and then the word is delivered to the pro-
cessor. Because of the phenomenon of locality of reference, when a block of data is
fetched into the cache to satisfy a single memory reference, it is likely that there will
be future references to that same memory location or to other words in the block.

Figure 4.3b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically
larger than the L2 cache.

Figure 4.4 depicts the structure of a cache/ main- memory system. Main mem-
ory consists of up to 2n addressable words, with each word having a unique n- bit
address. For mapping purposes, this memory is considered to consist of a number
of fixed- length blocks of K words each. That is, there are M = 2n/K blocks in main
memory. The cache consists of m blocks, called lines. Each line contains K words,

CPU

Word transfer

Fast

Fastest Fast
Less
fast

Slow

Block transfer

Cache Main memory

(a) Single cache

(b) Three-level cache organization

CPU Level 1
(L1) cache

Level 2
(L2) cache

Level 3
(L3) cache

Main
memory

Slow

Figure 4.3 Cache and Main Memory

9

plus a tag of a few bits. Each line also includes control bits (not shown), such as a
bit to indicate whether the line has been modified since being loaded into the cache.
The length of a line, not including tag and control bits, is the line size. The line size
may be as small as 32 bits, with each “word” being a single byte; in this case the
line size is 4 bytes. The number of lines is considerably less than the number of
main memory blocks (m V M). At any time, some subset of the blocks of mem-
ory resides in lines in the cache. If a word in a block of memory is read, that block
is transferred to one of the lines of the cache. Because there are more blocks than
lines, an individual line cannot be uniquely and permanently dedicated to a par-
ticular block. Thus, each line includes a tag that identifies which particular block is
currently being stored. The tag is usually a portion of the main memory address, as
described later in this section.

Figure 4.5 illustrates the read operation. The processor generates the read
address (RA) of a word to be read. If the word is contained in the cache, it is deliv-
ered to the processor. Otherwise, the block containing that word is loaded into the
cache, and the word is delivered to the processor. Figure 4.5 shows these last two
operations occurring in parallel and reflects the organization shown in Figure 4.6,
which is typical of contemporary cache organizations. In this organization, the cache
connects to the processor via data, control, and address lines. The data and address
lines also attach to data and address buffers, which attach to a system bus from

Memory
address

0
1
2

0
1
2

C – 1

3

2n – 1

Word
length

Block length
(K words)

Block 0
(K words)

Block M–1

Line
number Tag Block

(b) Main memory

(a) Cache

•
•
•

•
•
•

Figure 4.4 Cache/Main Memory Structure

10

which main memory is reached. When a cache hit occurs, the data and address buff-
ers are disabled and communication is only between processor and cache, with no
system bus traffic. When a cache miss occurs, the desired address is loaded onto the
system bus and the data are returned through the data buffer to both the cache and
the processor. In other organizations, the cache is physically interposed between
the processor and the main memory for all data, address, and control lines. In this
latter case, for a cache miss, the desired word is first read into the cache and then
transferred from cache to processor.

Receive address
RA from CPU

Is block
containing RA
in cache?

Fetch RA word
and deliver
to CPU

DONE

Access main
memory for block
containing RA

Allocate cache
line for main
memory block

Deliver RA word
to CPU

Load main
memory block
into cache line

START

No

Yes

Figure 4.5 Cache Read Operation

11

Processor Cache

Address

Address
buffer

Data
buffer

Control

Data

Control

Sy
st

em
 b

us

Figure 4.6 Typical Cache Organization

