
1

3.4 Defining Data
3.4.1 Intrinsic Data Types
3.4.2 Data Definition Statement
3.4.3 Adding a Variable to the AddTwo Program
3.4.4 Defining BYTE and SBYTE Data
3.4.5 Defining WORD and SWORD Data
3.4.6 Defining DWORD and SDWORD Data
3.4.7 Defining QWORD Data
3.4.8 Defining Packed BCD (TBYTE) Data
3.4.9 Defining Floating-Point Types
3.4.10 A Program that Adds Variables
3.4.11 Little-Endian Order
3.4.12 Declaring Uninitialized Data

3.5 Symbolic Constants
3.5.1 Equal-Sign Directive
3.5.2 Calculating the Sizes of Arrays and Strings
3.5.3 EQU Directive
3.5.4 TEXTEQU Directive

3.6 64-Bit Programming

Lecture No.7

Lecture Outlines

3.4 Defining Data

3.4.1 Intrinsic Data Types
The assembler recognizes a basic set of intrinsic data types, which describe types in terms of
their size (byte, word, doubleword, and so on), whether they are signed, and whether they are
integers or reals. There’s a fair amount of overlap in these types—for example, the DWORD
type (32-bit, unsigned integer) is interchangeable with the SDWORD type (32-bit, signed inte-
ger). You might say that programmers use SDWORD to communicate to readers that a value will
contain a sign, but there is no enforcement by the assembler. The assembler only evaluates the
sizes of operands. So, for example, you can only assign variables of type DWORD, SDWORD,
or REAL4 to a 32-bit integer. Table 3-2 contains a list of all the intrinsic data types. The notation
IEEE in some of the table entries refers to standard real number formats published by the IEEE
Computer Society.

3.4.2 Data Definition Statement
A data definition statement sets aside storage in memory for a variable, with an optional name.
Data definition statements create variables based on intrinsic data types (Table 3-2). A data defi-
nition has the following syntax:

 [name] directive initializer [,initializer]...

2

Table 3-2 Intrinsic Data Types.

Type Usage

BYTE 8-bit unsigned integer. B stands for byte

SBYTE 8-bit signed integer. S stands for signed

WORD 16-bit unsigned integer

SWORD 16-bit signed integer

DWORD 32-bit unsigned integer. D stands for double

SDWORD 32-bit signed integer. SD stands for signed double

FWORD 48-bit integer (Far pointer in protected mode)

QWORD 64-bit integer. Q stands for quad

TBYTE 80-bit (10-byte) integer. T stands for Ten-byte

REAL4 32-bit (4-byte) IEEE short real

REAL8 64-bit (8-byte) IEEE long real

REAL10 80-bit (10-byte) IEEE extended real

This is an example of a data definition statement:

count DWORD 12345

Name The optional name assigned to a variable must conform to the rules for identifiers
(Section 3.1.8).

Directive The directive in a data definition statement can be BYTE, WORD, DWORD,
SBYTE, SWORD, or any of the types listed in Table 3-2. In addition, it can be any of the legacy
data definition directives shown in Table 3-3.

Table 3-3 Legacy Data Directives.

Directive Usage

DB 8-bit integer

DW 16-bit integer

DD 32-bit integer or real

DQ 64-bit integer or real

DT define 80-bit (10-byte) integer

3

Initializer At least one initializer is required in a data definition, even if it is zero. Additional ini-
tializers, if any, are separated by commas. For integer data types, initializer is an integer literal or
integer expression matching the size of the variable’s type, such as BYTE or WORD. If you prefer
to leave the variable uninitialized (assigned a random value), the ? symbol can be used as the ini-
tializer. All initializers, regardless of their format, are converted to binary data by the assembler.
Initializers such as 00110010b, 32h, and 50d all have the same binary value.

3.4.3 Adding a Variable to the AddTwo Program
Let’s create a new version of the AddTwo program we introduced at the beginning of this chap-
ter, which we will now call AddTwoSum. This version introduces a variable named sum, which
appears in the complete program listing:

 1: ; AddTwoSum.asm - Chapter 3 example
 2:
 3: .386
 4: .model flat,stdcall
 5: .stack 4096
 6: ExitProcess PROTO, dwExitCode:DWORD
 7:
 8: .data
 9: sum DWORD 0
10:
11: .code
12: main PROC
13: mov eax,5

14: add eax,6
15: mov sum,eax
16:
17:
18:

INVOKE ExitProcess,0
 main ENDP
 END main19:

You can run this in the debugger by setting a breakpoint on line 13 and stepping through the pro-
gram one line at a time. After executing line 15, hover the mouse over the sum variable to see its
value. Or, you can open a Watch window. To do that, select Windows from the Debug menu (dur-
ing a debugging session), select Watch, and select one of the four available choices (Watch1,
Watch2, Watch3, or Watch4). Then, highlight the sum variable with the mouse and drag it into
the Watch window. Figure 3-10 shows a sample, with a large arrow pointing at the current value
of sum after executing line 15.

3.4.4 Defining BYTE and SBYTE Data
The BYTE (define byte) and SBYTE (define signed byte) directives allocate storage for one or
more unsigned or signed values. Each initializer must fit into 8 bits of storage. For example,

value1 BYTE 'A'
 0value2 BYTE

value3 BYTE 255
value4 SBYTE −128
value5 SBYTE +127

; character literal
; smallest unsigned byte
; largest unsigned byte
; smallest signed byte
; largest signed byte

4

Figure 3–10 Using a Watch window in a debugging session.

A question mark (?) initializer leaves the variable uninitialized, implying that it will be assigned
a value at runtime:

value6 BYTE ?

The optional name is a label marking the variable’s offset from the beginning of its enclosing
segment. For example, if value1 is located at offset 0000 in the data segment and consumes one
byte of storage, value2 is automatically located at offset 0001:

value1 BYTE 10h
value2 BYTE 20h

The DB directive can also define an 8-bit variable, signed or unsigned:

val1 DB 255
val2 DB -128

; unsigned byte
; signed byte

Multiple Initializers
If multiple initializers are used in the same data definition, its label refers only to the offset of the
first initializer. In the following example, assume list is located at offset 0000. If so, the value 10
is at offset 0000, 20 is at offset 0001, 30 is at offset 0002, and 40 is at offset 0003:

list BYTE 10,20,30,40

Figure 3-11 shows list as a sequence of bytes, each with its own offset.

5

Figure 3–11 Memory layout of a byte sequence.

Not all data definitions require labels. To continue the array of bytes begun with list, for
example, we can define additional bytes on the next lines:

list BYTE 10,20,30,40
 BYTE 50,60,70,80
 BYTE 81,82,83,84

Within a single data definition, its initializers can use different radixes. Character and string
literals can be freely mixed. In the following example, list1 and list2 have the same contents:

list1 BYTE 10, 32, 41h, 00100010b
list2 BYTE 0Ah, 20h, 'A', 22h

Defining Strings
To define a string of characters, enclose them in single or double quotation marks. The most
common type of string ends with a null byte (containing 0). Called a null-terminated string,
strings of this type are used in many programming languages:

0000:

0001:

0002:

0003:

Offset

10

20

30

40

Value

greeting1 BYTE "Good afternoon",0
greeting2 BYTE 'Good night',0

Each character uses a byte of storage. Strings are an exception to the rule that byte values must
be separated by commas. Without that exception, greeting1 would have to be defined as

greeting1 BYTE 'G','o','o','d'....etc.

which would be exceedingly tedious. A string can be divided between multiple lines without
having to supply a label for each line:

greeting1 BYTE "Welcome to the Encryption Demo program "
 BYTE "created by Kip Irvine.",0dh,0ah
 BYTE "If you wish to modify this program, please "
 BYTE "send me a copy.",0dh,0ah,0

The hexadecimal codes 0Dh and 0Ah are alternately called CR/LF (carriage-return line-feed)
or end-of-line characters. When written to standard output, they move the cursor to the left col-
umn of the line following the current line.

The line continuation character (\) concatenates two source code lines into a single statement.
It must be the last character on the line. The following statements are equivalent:

greeting1 BYTE "Welcome to the Encryption Demo program "

and

greeting1 \
BYTE "Welcome to the Encryption Demo program "

6

DUP Operator
The DUP operator allocates storage for multiple data items, using a integer expression as a
counter. It is particularly useful when allocating space for a string or array, and can be used with
initialized or uninitialized data:

BYTE 20 DUP(0) ; 20 bytes, all equal to zero
BYTE 20 DUP(?) ; 20 bytes, uninitialized
BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"

3.4.5 Defining WORD and SWORD Data
The WORD (define word) and SWORD (define signed word) directives create storage for one or
more 16-bit integers:

word1 WORD 65535 ; largest unsigned value
word2 SWORD -32768 ; smallest signed value
word3 WORD ? ; uninitialized, unsigned

The legacy DW directive can also be used:

val1 DW 65535 ; unsigned
val2 DW -32768 ; signed

Array of 16-Bit Words Create an array of words by listing the elements or using the DUP
operator. The following array contains a list of values:

myList WORD 1,2,3,4,5

Figure 3-12 shows a diagram of the array in memory, assuming myList starts at offset 0000. The
addresses increment by 2 because each value occupies 2 bytes.

Figure 3–12 Memory layout, 16-bit word array.

The DUP operator provides a convenient way to declare an array:

array WORD 5 DUP(?) ; 5 values, uninitialized

Offset

1

2

3

4

5

Value

0000:

0002:

0004:

0006:

0008:

7

3.4.6 Defining DWORD and SDWORD Data
The DWORD directive (define doubleword) and SDWORD directive (define signed double-
word) allocate storage for one or more 32-bit integers:

val1 DWORD 12345678h ; unsigned
val2 SDWORD −2147483648 ; signed
val3 DWORD 20 DUP(?) ; unsigned array

The legacy DD directive can also be used to define doubleword data.

val1 DD 12345678h ; unsigned
val2 DD −2147483648 ; signed

The DWORD can be used to declare a variable that contains the 32-bit offset of another variable.
Below, pVal contains the offset of val3:

pVal DWORD val3

Array of 32-Bt Doublewords Let’s create an array of doublewords by explicitly initializing
each value:

myList DWORD 1,2,3,4,5

Figure 3-13 shows a diagram of this array in memory, assuming myList starts at offset 0000.
The offsets increment by 4.

3.4.7 Defining QWORD Data
The QWORD (define quadword) directive allocates storage for 64-bit (8-byte) values:

quad1 QWORD 1234567812345678h

The legacy DQ directive can also be used to define quadword data:

quad1 DQ 1234567812345678h

Figure 3–13 Memory layout, 32-bit doubleword array.

3.4.8 Defining Packed BCD (TBYTE) Data
Intel stores a packed binary coded decimal (BCD) integers in a 10-byte package. Each byte
(except the highest) contains two decimal digits. In the lower 9 storage bytes, each half-byte
holds a single decimal digit. In the highest byte, the highest bit indicates the number’s sign. If
the highest byte equals 80h, the number is negative; if the highest byte equals 00h, the number is
positive. The integer range is �999,999,999,999,999,999 to +999,999,999,999,999,999.

Example The hexadecimal storage bytes for positive and negative decimal 1234 are shown in
the following table, from the least significant byte to the most significant byte:

1

2

3

4

5

Offset Value

0000:

0004:

0008:

000C:

0010:

8

MASM uses the TBYTE directive to declare packed BCD variables. Constant initializers
must be in hexadecimal because the assembler does not automatically translate decimal initializ-
ers to BCD. The following two examples demonstrate both valid and invalid ways of represent-
ing decimal �1234:

intVal TBYTE 800000000000001234h ; valid
intVal TBYTE -1234 ; invalid

The reason the second example is invalid is that MASM encodes the constant as a binary integer
rather than a packed BCD integer.

If you want to encode a real number as packed BCD, you can first load it onto the floating-
point register stack with the FLD instruction and then use the FBSTP instruction to convert it to
packed BCD. This instruction rounds the value to the nearest integer:

.data
posVal REAL8 1.5
bcdVal TBYTE ?

.code
fld posVal ; load onto floating-point stack
fbstp bcdVal ; rounds up to 2 as packed BCD

If posVal were equal to 1.5, the resulting BCD value would be 2. In Chapter 7, you will learn
how to do arithmetic with packed BCD values.

Decimal Value

+1234

�1234

Storage Bytes

34 12 00 00 00 00 00 00 00 00

34 12 00 00 00 00 00 00 00 80

3.4.9 Defining Floating-Point Types
REAL4 defines a 4-byte single-precision floating-point variable. REAL8 defines an 8-byte double-
precision value, and REAL10 defines a 10-byte extended-precision value. Each requires one or
more real constant initializers:

REAL4 -1.2rVal1
rVal2
rVal3

REAL8 3.2E-260
REAL10 4.6E+4096

ShortArray REAL4 20 DUP(0.0)

Table 3-4 describes each of the standard real types in terms of their minimum number of sig-
nificant digits and approximate range:

The DD, DQ, and DT directives can define also real numbers:

rVal1 DD -1.2
rVal2 DQ 3.2E-260
rVal3 DT 4.6E+4096

; short real
; long real
; extended-precision real

9

Table 3-4 Standard Real Number Types.

 1: ; AddVariables.asm - Chapter 3 example
 2:
 3: .386
 4: .model flat,stdcall
 5: .stack 4096
 6: ExitProcess PROTO, dwExitCode:DWORD
 7:
 8: .data
 9: firstval DWORD 20002000h
10: secondval DWORD 11111111h

Data Type Significant Digits Approximate Range

Short real 6 1.18 � 10-38 to 3.40 � 1038

Long real 15 2.23 � 10-308 to 1.79 � 10308

Extended-precision real 19 3.37 � 10-4932 to 1.18 � 104932

Clarification: The MASM assembler includes data types such as real4 and real8, suggesting that
the values they represent are real numbers. More correctly, the values are floating-point numbers,
which have a limited amount of precision and range. Mathematically, a real number has unlimited
precision and size.

11: thirdval DWORD 22222222h
 sum DWORD 012:

13:
14:
15:

.code
main PROC

16:
17:
18:
19:

mov eax,firstval
add eax,secondval
add eax,thirdval
mov sum,eax

20:
21:
22:

INVOKE ExitProcess,0
 main ENDP
 END main23:

3.4.10 A Program That Adds Variables
The sample programs shown so far in this chapter added integers stored in registers. Now that
you have some understanding of how to declare data, we will revise the same program by mak-
ing it add the contents of three integer variables and store the sum in a fourth variable.

Notice that we have initialized three variables with nonzero values (lines 9–11). Lines 16–18 add
the variables. The x86 instruction set does not let us add one variable directly to another, but it does
allow a variable to be added to a register. That is why lines 16–17 use EAX as an accumulator:

10

16: mov eax,firstval
17: add eax,secondval

After line 17, EAX contains the sum of firstval and secondval. Next, line 18 adds thirdval to
the sum in EAX:

18: add eax,thirdval

Finally, on line 19, the sum is copied into the variable named sum:

19: mov sum,eax

As an exercise, we encourage you to run this program in a debugging session and examine each
of the registers after each instruction executes. The final sum should be hexadecimal 53335333.

3.4.11 Little-Endian Order
x86 processors store and retrieve data from memory using little-endian order (low to high). The
least significant byte is stored at the first memory address allocated for the data. The remaining
bytes are stored in the next consecutive memory positions. Consider the doubleword 12345678h. If
placed in memory at offset 0000, 78h would be stored in the first byte, 56h would be stored in the
second byte, and the remaining bytes would be at offsets 0002 and 0003, as shown in Figure 3-14.

Figure 3–14 Little-endian representation of 12345678h.

Tip: During a debugging session, if you want to display the variable in hexadecimal, do the fol-
lowing: Hover the mouse over a variable or register for a second until a gray rectangle appears
under the mouse. Right-click the rectangle and select Hexadecimal Display from the popup menu.

0000: 78

56

34

12

0001:

0002:

0003:

Some other computer systems use big-endian order (high to low). Figure 3-15 shows an exam-
ple of 12345678h stored in big-endian order at offset 0:

Figure 3–15 Big-endian representation of 12345678h.

12

34

56

78

0001:

0002:

0003:

0000:

11

3.4.12 Declaring Uninitialized Data
The .DATA? directive declares uninitialized data. When defining a large block of uninitialized
data, the .DATA? directive reduces the size of a compiled program. For example, the following
code is declared efficiently:

.data
smallArray DWORD 10 DUP(0) ; 40 bytes
.data?
bigArray DWORD 5000 DUP(?) ; 20,000 bytes, not initialized

The following code, on the other hand, produces a compiled program 20,000 bytes larger:

.data
smallArray DWORD 10 DUP(0) ; 40 bytes
bigArray DWORD 5000 DUP(?) ; 20,000 bytes

Mixing Code and Data The assembler lets you switch back and forth between code and data
in your programs. You might, for example, want to declare a variable used only within a local-
ized area of a program. The following example inserts a variable named temp between two code
statements:

.code
mov eax,ebx
.data
temp DWORD ?
.code
mov temp,eax
. . .

Although the declaration of temp appears to interrupt the flow of executable instructions,
MASM places temp in the data segment, separate from the segment holding compiled code.
At the same time, intermixing .code and .data directives can cause a program to become hard
to read.

3.5 Symbolic Constants
A symbolic constant (or symbol definition) is created by associating an identifier (a symbol) with
an integer expression or some text. Symbols do not reserve storage. They are used only by the
assembler when scanning a program, and they cannot change at runtime. The following table
summarizes their differences:

We will show how to use the equal-sign directive (=) to create symbols representing integer
expressions. We will use the EQU and TEXTEQU directives to create symbols representing
arbitrary text.

Symbol Variable

No YesUses storage?

Value changes at runtime? No Yes

12

3.5.1 Equal-Sign Directive
The equal-sign directive associates a symbol name with an integer expression (see Section
3.1.3). The syntax is

name = expression

Ordinarily, expression is a 32-bit integer value. When a program is assembled, all occurrences of
name are replaced by expression during the assembler’s preprocessor step. Suppose the follow-
ing statement occurs near the beginning of a source code file:

COUNT = 500

Further, suppose the following statement should be found in the file 10 lines later:

mov eax, COUNT

When the file is assembled, MASM will scan the source file and produce the corresponding code
lines:

mov eax, 500

Why Use Symbols? We might have skipped the COUNT symbol entirely and simply coded
the MOV instruction with the literal 500, but experience has shown that programs are easier to
read and maintain if symbols are used. Suppose COUNT were used many times throughout a
program. At a later time, we could easily redefine its value:

COUNT = 600

Assuming that the source file was assembled again, all instances of COUNT would be automati-
cally replaced by the value 600.

Current Location Counter One of the most important symbols of all, shown as $, is called
the current location counter. For example, the following declaration declares a variable named
selfPtr and initializes it with the variable’s offset value:

selfPtr DWORD $

Keyboard Definitions Programs often define symbols that identify commonly used numeric key-
board codes. For example, 27 is the ASCII code for the Esc key:

Esc_key = 27

Later in the same program, a statement is more self-describing if it uses the symbol rather than
an integer literal. Use

mov al,Esc_key ; good style

rather than

mov al,27 ; poor style

13

Using the DUP Operator Section 3.4.4 showed how to use the DUP operator to create stor-
age for arrays and strings. The counter used by DUP should be a symbolic constant, to simplify
program maintenance. In the next example, if COUNT has been defined, it can be used in the
following data definition:

array dword COUNT DUP(0)

Redefinitions A symbol defined with � can be redefined within the same program. The fol-
lowing example shows how the assembler evaluates COUNT as it changes value:

COUNT = 5
mov al,COUNT ; AL = 5
COUNT = 10
mov al,COUNT ; AL = 10
COUNT = 100
mov al,COUNT ; AL = 100

The changing value of a symbol such as COUNT has nothing to do with the runtime execution
order of statements. Instead, the symbol changes value according to the assembler’s sequential
processing of the source code during the assembler’s preprocessing stage.

3.5.2 Calculating the Sizes of Arrays and Strings
When using an array, we usually like to know its size. The following example uses a constant
named ListSize to declare the size of list:

list BYTE 10,20,30,40
ListSize = 4

Explicitly stating an array’s size can lead to a programming error, particularly if you should later
insert or remove array elements. A better way to declare an array size is to let the assembler
calculate its value for you. The $ operator (current location counter) returns the offset associated

with the current program statement. In the following example, ListSize is calculated by subtract-
ing the offset of list from the current location counter ($):

list BYTE 10,20,30,40
ListSize = ($ - list)

ListSize must follow immediately after list. The following, for example, produces too large a
value (24) for ListSize because the storage used by var2 affects the distance between the current
location counter and the offset of list:

list BYTE 10,20,30,40
var2 BYTE 20 DUP(?)
ListSize = ($ - list)

Rather than calculating the length of a string manually, let the assembler do it:

myString BYTE "This is a long string, containing"
BYTE "any number of characters"

myString_len = ($ − myString)

14

Arrays of Words and DoubleWords When calculating the number of elements in an array
containing values other than bytes, you should always divide the total array size (in bytes) by the
size of the individual array elements. The following code, for example, divides the address range
by 2 because each word in the array occupies 2 bytes (16 bits):

list WORD 1000h,2000h,3000h,4000h
ListSize = ($ − list) / 2

Similarly, each element of an array of doublewords is 4 bytes long, so its overall length must be
divided by four to produce the number of array elements:

list DWORD 10000000h,20000000h,30000000h,40000000h
ListSize = ($ − list) / 4

3.5.3 EQU Directive
The EQU directive associates a symbolic name with an integer expression or some arbitrary text.
There are three formats:

name EQU expression
name EQU symbol
name EQU <text>

In the first format, expression must be a valid integer expression (see Section 3.1.3). In the sec-
ond format, symbol is an existing symbol name, already defined with = or EQU. In the third for-
mat, any text may appear within the brackets <. . .>. When the assembler encounters name later
in the program, it substitutes the integer value or text for the symbol.

EQU can be useful when defining a value that does not evaluate to an integer. A real number
constant, for example, can be defined using EQU:

PI EQU <3.1416>

Example The following example associates a symbol with a character string. Then a variable
can be created using the symbol:

pressKey EQU <"Press any key to continue...",0>
.
.
.data
prompt BYTE pressKey

Example Suppose we would like to define a symbol that counts the number of cells in a
10-by-10 integer matrix. We will define symbols two different ways, first as an integer expres-
sion and second as a text expression. The two symbols are then used in data definitions:

 10 * 10matrix1 EQU
matrix2 EQU <10 * 10>
.data
M1 WORD matrix1
M2 WORD matrix2

15

The assembler produces different data definitions for M1 and M2. The integer expression in
matrix1 is evaluated and assigned to M1. On the other hand, the text in matrix2 is copied
directly into the data definition for M2:

M1 WORD 100
M2 WORD 10 * 10

No Redefinition Unlike the = directive, a symbol defined with EQU cannot be redefined in
the same source code file. This restriction prevents an existing symbol from being inadvertently
assigned a new value.

3.5.4 TEXTEQU Directive
The TEXTEQU directive, similar to EQU, creates what is known as a text macro. There are three
different formats: the first assigns text, the second assigns the contents of an existing text macro,
and the third assigns a constant integer expression:

name TEXTEQU <text>
name TEXTEQU textmacro
name TEXTEQU %constExpr

For example, the prompt1 variable uses the continueMsg text macro:

continueMsg TEXTEQU <"Do you wish to continue (Y/N)?">
.data
prompt1 BYTE continueMsg

Text macros can build on each other. In the next example, count is set to the value of an integer
expression involving rowSize. Then the symbol move is defined as mov. Finally, setupAL is
built from move and count:

rowSize = 5
count TEXTEQU %(rowSize * 2)
move TEXTEQU <mov>
setupAL TEXTEQU <move al,count>

Therefore, the statement

setupAL

would be assembled as

mov al,10

A symbol defined by TEXTEQU can be redefined at any time.

16

3.6 64-Bit Programming
With the advent of 64-bit processors by AMD and Intel, there has been increased interest in 64-bit
programming. MASM supports 64-bit code, and the 64-bit version of the assembler is installed
with all full versions of Visual Studio 2012 (Ultimate, Premium, or Professional) and with the
Visual Studio 2012 Express for Desktop. In each chapter, beginning with this one, we will
include 64-bit versions of some of the sample programs. We will also discuss the Irvine64 sub-
routine library supplied with this book.

Let’s borrow the AddTwoSum program shown earlier in this chapter, and modify it for 64-bit
programming. We will use the 64-bit register RAX to accumulate two integers, and store their
sum in a 64-bit variable:

 1: ; AddTwoSum_64.asm - Chapter 3 example.
 2:
 3: ExitProcess PROTO
 4:
 5: .data
 6: sum DWORD 0
 7:
 8: .code

 9: main PROC
 mov eax,510:

11:
12:

 add eax,6
 mov sum,eax

13:
 mov ecx,014:

15: call ExitProcess
16: main ENDP
17: END

Here’s how this program is different from the 32-bit version we showed earlier in the chapter:

• The following three lines, which were in the 32-bit version of the AddTwoSum program are
not used in the 64-bit version:

.386

.model flat,stdcall

.stack 4096

• Statements using the PROTO keyword do not have parameters in 64-bit programs. This is
from Line 3:

 ExitProcess PROTO

This was our earlier 32-bit version:

 ExitProcess PROTO,dwExitCode:DWORD

• Lines 14–15 use two instructions to end the program (mov and call). The 32-bit version used
an INVOKE statement to do the same thing. The 64-bit version of MASM does not support
the INVOKE directive.

• In line 17, the end directive does not specify a program entry point. The 32-bit version of the
program did.

17

Using 64-Bit Registers
In some applications, you may need to perform arithmetic with integers that are larger than
32 bits. In that case, you can use 64-bit registers and variables. For example, this is how we
could make our sample program use 64-bit values:

• In line 6, we would change DWORD to QWORD when declaring the sum variable.
• In lines 10–12, we would change EAX to its 64-bit version, named RAX.

This is how lines 6–12 would appear after we made the changes:

 6: sum QWORD 0
 7:
 8: .code
 9: main PROC
10: mov rax,5
11: add rax,6
12: mov sum,rax

Whether you write 32-bit or 64-bit assembly programs is largely a matter of preference. Here’s
something to remember: the 64-bit version of MASM 11.0 (shipped with Visual Studio 12) does

not support the INVOKE directive. Also, you must be running the 64-bit version of Windows in
order to run 64-bit programs.

You can find instructions at the author’s web site (asmirvine.com) to help you configure
Visual Studio for 64-bit programming.

	Lecture No.6
	Lecture No.6-All

