
1

3.6 PCI Express
PCI Physical and Logical Architecture
PCIe Physical Layer
PCIe Transaction Layer
PCIe Data Link Layer

Lecture No.7

Learning Objectives
After studying this lecture, you should be able to:

 r Present an overview of PCIe.

Lecture Outlines

3.6 pCi express

The peripheral component interconnect (PCI) is a popular high-bandwidth,
 processor-independent bus that can function as a mezzanine or peripheral bus.
Compared with other common bus specifications, PCI delivers better system perfor-
mance for high-speed I/O subsystems (e.g., graphic display adapters, network inter-
face controllers, and disk controllers).

Intel began work on PCI in 1990 for its Pentium-based systems. Intel soon
released all the patents to the public domain and promoted the creation of an
industry association, the PCI Special Interest Group (SIG), to develop further and
maintain the compatibility of the PCI specifications. The result is that PCI has been
widely adopted and is finding increasing use in personal computer, workstation, and
server systems. Because the specification is in the public domain and is supported
by a broad cross-section of the microprocessor and peripheral industry, PCI prod-
ucts built by different vendors are compatible.

As with the system bus discussed in the preceding sections, the bus-based PCI
scheme has not been able to keep pace with the data rate demands of attached
devices. Accordingly, a new version, known as PCI Express (PCIe) has been devel-
oped. PCIe, as with QPI, is a point-to-point interconnect scheme intended to replace
bus-based schemes such as PCI.

A key requirement for PCIe is high capacity to support the needs of higher
data rate I/O devices, such as Gigabit Ethernet. Another requirement deals with
the need to support time-dependent data streams. Applications such as video-on-
demand and audio redistribution are putting real-time constraints on servers too.
Many communications applications and embedded PC control systems also pro-
cess data in real-time. Today’s platforms must also deal with multiple concurrent

2

transfers at ever-increasing data rates. It is no longer acceptable to treat all data as
equal—it is more important, for example, to process streaming data first since late
real-time data is as useless as no data. Data needs to be tagged so that an I/O system
can prioritize its flow throughout the platform.

PCI Physical and Logical Architecture

Figure 3.21 shows a typical configuration that supports the use of PCIe. A root
 complex device, also referred to as a chipset or a host bridge, connects the processor
and memory subsystem to the PCI Express switch fabric comprising one or more
PCIe and PCIe switch devices. The root complex acts as a buffering device, to deal
with difference in data rates between I/O controllers and memory and processor
components. The root complex also translates between PCIe transaction formats and
the processor and memory signal and control requirements. The chipset will typically
support multiple PCIe ports, some of which attach directly to a PCIe device, and one
or more that attach to a switch that manages multiple PCIe streams. PCIe links from
the chipset may attach to the following kinds of devices that implement PCIe:

■ Switch: The switch manages multiple PCIe streams.
■ PCIe endpoint: An I/O device or controller that implements PCIe, such as

a Gigabit ethernet switch, a graphics or video controller, disk interface, or a
communications controller.

Chipset

Core Core

Gigabit
ethernet

PCIe

PCIe

PCIe PCIe

PCIePCIe

PCIe

PCIe–PCI
bridge

Memory

Memory

Legacy
endpoint

PCIe
endpoint

PCIe
endpoint

PCIe
endpoint

Switch

Figure 3.21 Typical Configuration Using PCIe

3

■ Legacy endpoint: Legacy endpoint category is intended for existing designs
that have been migrated to PCI Express, and it allows legacy behaviors such
as use of I/O space and locked transactions. PCI Express endpoints are not
permitted to require the use of I/O space at runtime and must not use locked
transactions. By distinguishing these categories, it is possible for a system
designer to restrict or eliminate legacy behaviors that have negative impacts
on system performance and robustness.

■ PCIe/PCI bridge: Allows older PCI devices to be connected to PCIe-based
systems.

As with QPI, PCIe interactions are defined using a protocol architecture. The
PCIe protocol architecture encompasses the following layers (Figure 3.22):

■ Physical: Consists of the actual wires carrying the signals, as well as circuitry
and logic to support ancillary features required in the transmission and receipt
of the 1s and 0s.

■ Data link: Is responsible for reliable transmission and flow control. Data pack-
ets generated and consumed by the DLL are called Data Link Layer Packets
(DLLPs).

■ Transaction: Generates and consumes data packets used to implement load/
store data transfer mechanisms and also manages the flow control of those
packets between the two components on a link. Data packets generated and
consumed by the TL are called Transaction Layer Packets (TLPs).

Above the TL are software layers that generate read and write requests that
are transported by the transaction layer to the I/O devices using a packet-based
transaction protocol.

PCIe Physical Layer

Similar to QPI, PCIe is a point-to-point architecture. Each PCIe port consists of a
number of bidirectional lanes (note that in QPI, the lane refers to transfer in one
direction only). Transfer in each direction in a lane is by means of differential signal-
ing over a pair of wires. A PCI port can provide 1, 4, 6, 16, or 32 lanes. In what follows,
we refer to the PCIe 3.0 specification, introduced in late 2010.

As with QPI, PCIe uses a multilane distribution technique. Figure 3.23 shows
an example for a PCIe port consisting of four lanes. Data are distributed to the four

Data link

Physical

Transaction layer
packets (TLPs)

Data link layer
packets (DLLPs)

Transaction

Data link

Physical

Transaction

Figure 3.22 PCIe Protocol Layers

B1B2B3B4B5B6B7 B0

byte stream

PCIe
lane 0

B4 B0

B5 B1

B6 B2

B7 B3

128b/
130b

PCIe
lane 1

128b/
130b

PCIe
lane 2

128b/
130b

PCIe
lane 3

128b/
130b

Figure 3.23 PCIe Multilane Distribution

4

5

lanes 1 byte at a time using a simple round-robin scheme. At each physical lane,
data are buffered and processed 16 bytes (128 bits) at a time. Each block of 128 bits
is encoded into a unique 130-bit codeword for transmission; this is referred to as
128b/130b encoding. Thus, the effective data rate of an individual lane is reduced by
a factor of 128/130.

To understand the rationale for the 128b/130b encoding, note that unlike QPI,
PCIe does not use its clock line to synchronize the bit stream. That is, the clock line
is not used to determine the start and end point of each incoming bit; it is used for
other signaling purposes only. However, it is necessary for the receiver to be syn-
chronized with the transmitter, so that the receiver knows when each bit begins and
ends. If there is any drift between the clocks used for bit transmission and reception
of the transmitter and receiver, errors may occur. To compensate for the possibil-
ity of drift, PCIe relies on the receiver synchronizing with the transmitter based on
the transmitted signal. As with QPI, PCIe uses differential signaling over a pair of
wires. Synchronization can be achieved by the receiver looking for transitions in
the data and synchronizing its clock to the transition. However, consider that with
a long string of 1s or 0s using differential signaling, the output is a constant voltage
over a long period of time. Under these circumstances, any drift between the clocks
of transmitter and receiver will result in loss of synchronization between the two.

A common approach, and the one used in PCIe 3.0, to overcoming the prob-
lem of a long string of bits of one value is scrambling. Scrambling, which does not
increase the number of bits to be transmitted, is a mapping technique that tends to
make the data appear more random. The scrambling tends to spread out the num-
ber of transitions so that they appear at the receiver more uniformly spaced, which
is good for synchronization. Also, other transmission properties, such as spectral
properties, are enhanced if the data are more nearly of a random nature rather than
constant or repetitive. For more discussion of scrambling, see Appendix E.

Another technique that can aid in synchronization is encoding, in which add-
itional bits are inserted into the bit stream to force transitions. For PCIe 3.0, each
group of 128 bits of input is mapped into a 130-bit block by adding a 2-bit block sync
header. The value of the header is 10 for a data block and 01 for what is called an
ordered set block, which refers to a link-level information block.

Figure 3.24 illustrates the use of scrambling and encoding. Data to be trans-
mitted are fed into a scrambler. The scrambled output is then fed into a 128b/130b
encoder, which buffers 128 bits and then maps the 128-bit block into a 130-bit block.
This block then passes through a parallel-to-serial converter and transmitted one bit
at a time using differential signaling.

At the receiver, a clock is synchronized to the incoming data to recover the bit
stream. This then passes through a serial-to-parallel converter to produce a stream
of 130-bit blocks. Each block is passed through a 128b/130b decoder to recover the
original scrambled bit pattern, which is then descrambled to produce the original
bit stream.

Using these techniques, a data rate of 16 GB/s can be achieved. One final
detail to mention; each transmission of a block of data over a PCI link begins and
ends with an 8-bit framing sequence intended to give the receiver time to synchro-
nize with the incoming physical layer bit stream.

6

PCIe Transaction Layer

The transaction layer (TL) receives read and write requests from the software above
the TL and creates request packets for transmission to a destination via the link
layer. Most transactions use a split transaction technique, which works in the follow-
ing fashion. A request packet is sent out by a source PCIe device, which then waits
for a response, called a completion packet. The completion following a request is
initiated by the completer only when it has the data and/or status ready for delivery.
Each packet has a unique identifier that enables completion packets to be directed
to the correct originator. With the split transaction technique, the completion is sep-
arated in time from the request, in contrast to a typical bus operation in which both
sides of a transaction must be available to seize and use the bus. Between the request
and the completion, other PCIe traffic may use the link.

TL messages and some write transactions are posted transactions, meaning
that no response is expected.

The TL packet format supports 32-bit memory addressing and extended
64-bit memory addressing. Packets also have attributes such as “no-snoop,”

Scrambler
Differential

receiver

Data recovery
circuit

Clock recovery
circuit

8b

130b

128b

130b
1b

1b

1b

128b/130b Encoding

Parallel to serial

(a) Transmitter

Serial to parallel

Transmitter differential
driver 128b/130b decoding

Descrambler

8b

8b

D+ D–

D+ D–

(b) Receiver

Figure 3.24 PCIe Transmit and Receive Block Diagrams

7

“relaxedordering,” and “priority,” which may be used to optimally route these
packets through the I/O subsystem.

address spaces and transaction types The TL supports four address spaces:

■ Memory: The memory space includes system main memory. It also includes
PCIe I/O devices. Certain ranges of memory addresses map into I/O devices.

■ I/O: This address space is used for legacy PCI devices, with reserved memory
address ranges used to address legacy I/O devices.

■ Configuration: This address space enables the TL to read/write configuration
registers associated with I/O devices.

■ Message: This address space is for control signals related to interrupts, error
handling, and power management.

Table 3.2 shows the transaction types provided by the TL. For memory, I/O, and
configuration address spaces, there are read and write transactions. In the case of
memory transactions, there is also a read lock request function. Locked operations
occur as a result of device drivers requesting atomic access to registers on a PCIe
device. A device driver, for example, can atomically read, modify, and then write
to a device register. To accomplish this, the device driver causes the processor to
execute an instruction or set of instructions. The root complex converts these pro-
cessor instructions into a sequence of PCIe transactions, which perform individual
read and write requests for the device driver. If these transactions must be executed
atomically, the root complex locks the PCIe link while executing the transactions.
This locking prevents transactions that are not part of the sequence from occur-
ring. This sequence of transactions is called a locked operation. The particular set

Table 3.2 PCIe TLP Transaction Types

Address Space TLP Type Purpose

Memory

Memory Read Request
Transfer data to or from a location in the system
memory map.

Memory Read Lock Request

Memory Write Request

I/O
I/O Read Request Transfer data to or from a location in the system

memory map for legacy devices.I/O Write Request

Configuration

Config Type 0 Read Request

Transfer data to or from a location in the configura-
tion space of a PCIe device.

Config Type 0 Write Request

Config Type 1 Read Request

Config Type 1 Write Request

Message
Message Request

Provides in-band messaging and event reporting.
Message Request with Data

Memory, I/O,
Configuration

Completion

Returned for certain requests.
Completion with Data

Completion Locked

Completion Locked with Data

8

of processor instructions that can cause a locked operation to occur depends on the
system chip set and processor architecture.

To maintain compatibility with PCI, PCIe supports both Type 0 and Type 1 con-
figuration cycles. A Type 1 cycle propagates downstream until it reaches the bridge
interface hosting the bus (link) that the target device resides on. The configuration
transaction is converted on the destination link from Type 1 to Type 0 by the bridge.

Finally, completion messages are used with split transactions for memory, I/O,
and configuration transactions.

tlp packet assembly PCIe transactions are conveyed using transaction layer
packets, which are illustrated in Figure 3.25a. A TLP originates in the transaction layer
of the sending device and terminates at the transaction layer of the receiving device.

STP framing

Sequence number

ECRC

LCRC

(b) Data Link Layer Packet

STP framing

A
pp

en
de

d
by

 P
hy

si
ca

l L
ay

er

A
pp

en
de

d
by

 D
at

a
L

in
k

L
ay

er

C
re

at
ed

 b
y

T
ra

ns
ac

ti
on

 L
ay

er

C
re

at
ed

by
 D

L
L

1

2

12 or 16

0 to 4096

0 or 4

4

1

Number
of octets

Data

Header

Start

DLLP

End

1

4

1

CRC2

A
pp

en
de

d
by

 P
L

(a) Transaction Layer Packet

Figure 3.25 PCIe Protocol Data Unit Format

9

Upper layer software sends to the TL the information needed for the TL to
create the core of the TLP, which consists of the following fields:

■ Header: The header describes the type of packet and includes information
needed by the receiver to process the packet, including any needed routing
information. The internal header format is discussed subsequently.

■ Data: A data field of up to 4096 bytes may be included in the TLP. Some TLPs
do not contain a data field.

■ ECRC: An optional end-to-end CRC field enables the destination TL layer to
check for errors in the header and data portions of the TLP.

PCIe Data Link Layer

The purpose of the PCIe data link layer is to ensure reliable delivery of packets
across the PCIe link. The DLL participates in the formation of TLPs and also trans-
mits DLLPs.

data link layer packets Data link layer packets originate at the data link
layer of a transmitting device and terminate at the DLL of the device on the
other end of the link. Figure 3.25b shows the format of a DLLP. There are three
important groups of DLLPs used in managing a link: flow control packets, power
management packets, and TLP ACK and NAK packets. Power management
packets are used in managing power platform budgeting. Flow control packets
regulate the rate at which TLPs and DLLPs can be transmitted across a link. The
ACK and NAK packets are used in TLP processing, discussed in the following
paragraphs.

transaction layer packet processing The DLL adds two fields to the
core of the TLP created by the TL (Figure 3.25a): a 16-bit sequence number and a
32-bit link-layer CRC (LCRC). Whereas the core fields created at the TL are only
used at the destination TL, the two fields added by the DLL are processed at each
intermediate node on the way from source to destination.

When a TLP arrives at a device, the DLL strips off the sequence number and
LCRC fields and checks the LCRC. There are two possibilities:

1. If no errors are detected, the core portion of the TLP is handed up to the local
transaction layer. If this receiving device is the intended destination, then the
TL processes the TLP. Otherwise, the TL determines a route for the TLP and
passes it back down to the DLL for transmission over the next link on the way
to the destination.

2. If an error is detected, the DLL schedules an NAK DLL packet to return back
to the remote transmitter. The TLP is eliminated.

When the DLL transmits a TLP, it retains a copy of the TLP. If it receives
an NAK for the TLP with this sequence number, it retransmits the TLP. When it
receives an ACK, it discards the buffered TLP.

