
1

3.2 Example: Adding and Subtracting Integers 
3.2.1 The AddTwo Program 
3.2.2 Running and Debugging the AddTwo

Program
3.2.3 Program Template 

Lecture No.6

Lecture Outlines

3.3 Assembling, Linking, and Running Programs 

3.3.1 The Assemble-Link-Execute Cycle 
3.3.2 Listing File 

3.2 Example: Adding and Subtracting Integers

3.2.1 The AddTwo Program
Let’s revisit the AddTwo program we showed at the beginning of this chapter and add the neces-
sary declarations to make it a fully operational program. Remember, the line numbers are not
really part of the program:

 1: ; AddTwo.asm - adds two 32-bit integers
 2: ; Chapter 3 example
 3: 
 4: .386
 5: .model flat,stdcall
 6: .stack 4096
 7: ExitProcess PROTO, dwExitCode:DWORD
 8: 
 9: .code
10: main PROC

mov  eax,5 ; move 5 to the eax register11: 
12: add  eax,6 ; add 6 to the eax register
13:
14: INVOKE ExitProcess,0
15: main ENDP
16: END main

Line 4 contains the .386 directive, which identifies this as a 32-bit program that can access
32-bit registers and addresses. Line 5 selects the program’s memory model (flat), and iden-
tifies the calling convention (named stdcall) for procedures. We use this because 32-bit
Windows services require the stdcall convention to be used. (Chapter 8 explains how stdcall
works.) Line 6 sets aside 4096 bytes of storage for the runtime stack, which every program
must have. 

Line 7 declares a prototype for the ExitProcess function, which is a standard Windows ser-
vice. A prototype consists of the function name, the PROTO keyword, a comma, and a list of 
input parameters. The input parameter for ExitProcess is named dwExitCode. You might 
think of it as a return value passed back to the Window operating system. A return value of 

1



2

Let’s return to our listing of the AddTwo program. Line 16 uses the end directive to mark the last
line to be assembled, and it identifies the program entry point (main). The label main was
declared on Line 10, and it marks the address at which the program will begin to execute.

Tip: Visual Studio’s syntax highlighting and wavy lines under keywords are not consistent
when displaying assembly language code. If you want to disable it, here’s how: Choose
Options from the Tools menu, select Text Editor, select C/C++, select Advanced, and under the
Intellisense heading, set Disable Squiggles to True. Click OK to close the Options window.
Also, remember that MASM is not case-sensitive, so you can capitalize or not capitalize key-
words in any combination.

zero usually means our program was successful. Any other integer value generally indicates 
an error code number. So, you can think of your assembly programs as subroutines, or pro-
cesses, which are called by the operating system. When your program is ready to finish, it 
calls ExitProcess and returns an integer that tells the operating system that your program 
worked just fine.

A Review of the Assembler Directives
Let’s review some of the most important assembler directives we used in the sample program.
First, the .MODEL directive tells the assembler which memory model to use:

.model flat,stdcall

In 32-bit programs, we always use the flat memory model, which is associated with the proces-
sor’s protected mode. We talked about protected mode in Chapter 2. The stdcall keyword tells
the assembler how to manage the runtime stack when procedures are called. That’s a compli-
cated subject that we will address in Chapter 8. Next, the .STACK directive tells the assembler
how many bytes of memory to reserve for the program’s runtime stack:

.stack 4096

The value 4096 is probably more than we will ever use, but it happens to correspond to the size
of a memory page in the processor’s system for managing memory. All modern programs use a
stack when calling subroutines—first, to hold passed parameters, and second, to hold the address
of the code that called the function. The CPU uses this address to return when the function call
finishes, back to the spot where the function was called. In addition, the runtime stack can hold
local variables, that is, variables declared inside a function. 

The .CODE directive marks the beginning of the code area of a program, the area that con-
tains executable instructions. Usually the next line after .CODE is the declaration of the pro-
gram’s entry point, and by convention, it is usually a procedure named main. The entry point of
a program is the location of the very first instruction the program will execute. We used the fol-
lowing lines to convey this information:

.code
main PROC

The ENDP directive marks the end of a procedure. Our program had a procedure named main,
so the endp must use the same name:

main ENDP



3

Finally, the END directive marks the end of the program, and references the program entry
point:

END main

If you add any more lines to a program after the END directive, they will be ignored by the
assembler. You can put anything there—program comments, copies of your code, etc.—it
doesn’t matter.

3.2.2 Running and Debugging the AddTwo Program
You can easily use Visual Studio to edit, build, and run assembly language programs. The book’s
example files directory has a folder named Project32 that contains a Visual Studio 2012 Win-
dows Console project that has been configured for 32-bit assembly language programming.
(Another folder named Project64 is configured for 64-bit assembly.) The following instructions,
modeled after Visual Studio 2012, tell you how to open the sample project and create the
AddTwo program:

1. Open the Project32 folder and double-click the file named Project.sln. This should launch
the latest version of Visual Studio installed on your computer.

2. Open the Solution Explorer window inside Visual Studio. It should already be visible, but
you can always make it visible by selecting Solution Explorer from the View menu.

3. Right-click the project name in Solution Explorer, select Add from the context menu, and
then select New Item from the popup menu.

4. In the Add New File dialog window (see Figure 3-1), name the file AddTwo.asm, and choose
an appropriate disk folder for the file by filling in the Location entry.

5. Click the Add button to save the file.

Figure 3–1 Adding a new source code file to a Visual Studio project. 

6. Type in the program’s source code, shown here. The capitalization of keywords here is not
required:



4

; AddTwo.asm - adds two 32-bit integers.

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO,dwExitCode:DWORD

.code
main PROC
  mov  eax,5
  add  eax,6

  INVOKE ExitProcess,0
main ENDP
END main

7. Select Build Project from the Project menu, and look for error messages at the bottom of the
Visual Studio workspace. It’s called the Error List window. Figure 3-2 shows our sample
program after it has been opened and assembled. Notice that the status line on the bottom of
the window says Build succeeded when there are no errors.

Debugging Demonstration
We will demonstrate a sample debugging session for the AddTwo program. We have not shown
you a way to display variable values directly in the console window yet, so we will run the pro-
gram in a debugging session. We will use Visual Studio 2012 for this demonstration, but it would
work just as well in any version of Visual Studio from 2008 onward.

One way to run and debug a program is to, select Step Over from the Debug menu. Depend-
ing on how Visual Studio was configured, either the F10 function key or the Shift+F8 keys will
execute the Step Over command.

Figure 3–2 Building the Visual Studio project.



5

Another way to start a debugging session is to set a breakpoint on a program statement by
clicking the mouse in the vertical gray bar just to the left of the code window. A large red dot
will mark the breakpoint location. Then you can run the program by selecting Start Debugging
from the Debug menu.

Figure 3-3 shows the program at the start of a debugging session. A breakpoint was set on
Line 11, the first MOV instruction, and the debugger has paused on that line. The line has not
executed yet. When the debugger is active, the bottom status line of the Visual Studio window
turns orange. When you stop the debugger and return to edit mode, the status line turns blue. The
visual cue is helpful because you cannot edit or save a program while the debugger is running.

Figure 3-4 shows the debugger after the user has stepped through lines 11 and 12, and is
paused on line 14. By hovering the mouse over the EAX register name, we can see its current
contents (11). We can then finish the program execution by clicking the Continue button on the
toolbar, or by clicking the red Stop Debugging button (on the right side of the toolbar).

Customizing the Debugging Interface
You can customize the debugging interface while it is running. For example, you might want
to display the CPU registers; to do this, select Windows from the Debug menu, and then select
Registers. Figure 3-5 shows the same debugging session we used just now, with the Registers
window visible. We also closed some other nonessential windows. The value shown in EAX,
0000000B, is the hexadecimal representation of 11 decimal. We’ve drawn an arrow in the

Tip: If you try to set a breakpoint on a non-executable line, Visual Studio will just move the break-
point forward to the next executable line when you run the program.

Figure 3–3 Debugger paused at a breakpoint.



Figure 3–4 After executing lines 11 and 12 in the debugger.

Figure 3–5 Adding the Registers window to a debugging session.

6



7

figure, pointing to the value. In the Registers window, the EFL register contains all the status flag
settings (Zero, Carry, Overflow, etc.). If you right-click the Registers window and select Flags
from the popup menu, the window will display the individual flag values. Figure 3-6 shows an
example, where the flag values from left to right are: OV (overflow flag), UP (direction flag), EI
(interrupt flag), PL (sign flag), ZR (zero flag), AC (auxiliary carry), PE (parity flag), and CY
(carry flag). The precise meaning of these flags will be explained in Chapter 4.

One of the great things about the Registers window is that as you step through a program, any
register whose value is changed by the current instruction will turn red. Although we cannot
show it on the printed page (which is black and white), the red highlighting really jumps out at
you, to let you know how your program is affecting the registers. 

Figure 3–6 Showing the CPU status flags in the Registers window.

Tip: The book’s web site (asmirvine.com) has tutorials that show you how to assemble and debug
assembly language programs.

When you run an assembly language program inside Visual Studio, it launches inside a console
window. This is the same window you see when you run the program named cmd.exe from the
Windows Start menu. Alternatively, you could open up a command prompt in the project’s
Debug\Bin folder and run the application directly from the command line. If you did this, you
would only see the program’s output, which consists of text written to the console window. Look
for an executable filename having the same name as your Visual Studio project.

3.2.3 Program Template
Assembly language programs have a simple structure, with small variations. When you begin a
new program, it helps to start with an empty shell program with all basic elements in place. You
can avoid redundant typing by filling in the missing parts and saving the file under a new name.
The following program (Template.asm) can easily be customized. Note that comments have
been inserted, marking the points where your own code should be added. Capitalization of key-
words is optional:

; Program template (Template.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO, dwExitCode:DWORD

.data
; declare variables here 
.code



8

; write your code here

INVOKE ExitProcess,0
main ENDP
END main

Use Comments It’s a very good idea to include a program description, the name of the pro-
gram’s author, creation date, and information about subsequent modifications. Documentation of
this kind is useful to anyone who reads the program listing (including you, months or years from
now). Many programmers have discovered, years after writing a program, that they must
become reacquainted with their own code before they can modify it. If you’re taking a
programming course, your instructor may insist on additional information.

3.3 Assembling, Linking, and Running Programs
A source program written in assembly language cannot be executed directly on its target
computer. It must be translated, or assembled into executable code. In fact, an assembler is very
similar to a compiler, the type of program you would use to translate a C++ or Java program into
executable code. 

The assembler produces a file containing machine language called an object file. This file
isn’t quite ready to execute. It must be passed to another program called a linker, which in turn
produces an executable file. This file is ready to execute from the operating system’s command
prompt.

3.3.1 The Assemble-Link-Execute Cycle
The process of editing, assembling, linking, and executing assembly language programs is sum-
marized in Figure 3-7. Following is a detailed description of each step.

Step 1: A programmer uses a text editor to create an ASCII text file named the source file.

Step 2: The assembler reads the source file and produces an object file, a machine-language
translation of the program. Optionally, it produces a listing file. If any errors occur, the program-
mer must return to Step 1 and fix the program.

Step 3: The linker reads the object file and checks to see if the program contains any calls to
procedures in a link library. The linker copies any required procedures from the link library,
combines them with the object file, and produces the executable file.

Step 4: The operating system loader utility reads the executable file into memory and branches
the CPU to the program’s starting address, and the program begins to execute.

.code
main PROC

Figure 3–7 Assemble-Link-Execute cycle.

Source
file

Step 2:
Assembler

Step 1: Text editor

Step 3:
Linker

Step 4:
OS

Executable loader
file

OutputObject
file

Link
library

Listing
file



9

3.3.2 Listing File
A listing file contains a copy of the program’s source code, with line numbers, the numeric
address of each instruction, the machine code bytes of each instruction (in hexadecimal), and
a symbol table. The symbol table contains the names of all program identifiers, segments, and
related information. Advanced programmers sometimes use the listing file to get detailed

information about the program. Figure 3-8 shows a partial listing file for the AddTwo program.
Let’s examine it in more detail. Lines 1–7 contain no executable code, so they are copied
directly from the source file without changes. Line 9 shows that the beginning of the code seg-
ment is located at address 00000000 (in a 32-bit program, addresses display as 8 hexadecimal
digits). This address is relative to the beginning of the program’s memory footprint, but it will
be converted into an absolute memory address when the program is loaded into memory.
When that happens, the program might start at an address such as 00040000h.

Figure 3–8 Excerpt from the AddTwo source listing file.

 1:    ; AddTwo.asm - adds two 32-bit integers.
    ; Chapter 3 example 2:

 3:
 4:
 5:
 6:

    .386
    .model flat,stdcall
    .stack 4096
    ExitProcess PROTO,dwExitCode:DWORD 7:

 8:
     00000000 9:
     0000000010:

.code
main PROC

     00000000  B8 00000005 11:
C0      00000005  83 12: 06   

   mov  eax,5
   add  eax,6

13:
14:       invoke ExitProcess,0

00       6A 15:     00000008    +000000000h   push
16:        ExitProcess
17:     

0000000A  E8 00000000 E    
0000000F

18:    

   call
main ENDP
END main

Lines 10 and 11 also show the same starting address of 00000000, because the first executable
statement is the MOV instruction on line 11. Notice on line 11 that several hexadecimal bytes
appear between the address and the source code. These bytes (B8 00000005) represent the
machine code instruction (B8), and the constant 32-bit value (00000005) that is assigned to
EAX by the instruction:

11:  00000000  B8 00000005  mov eax,5

The value B8 is also known as an operation code (or just opcode), because it represents the spe-
cific machine instruction to move a 32-bit integer into the eax register. In Chapter 12 we explain
the structure of x86 machine instructions in great detail.

Line 12 also contains an executable instruction, starting at offset 00000005. That offset is a
distance of 5 bytes from the beginning of the program. Perhaps you can guess how that offset
was calculated.

www.asmirvine.com


10

Line 14 contains the invoke directive. Notice how lines 15 and 16 seem to have been inserted into
our code. This is because the INVOKE directive causes the assembler to generate the PUSH and
CALL statements shown on lines 15 and 16. In Chapter 5 we will show how to use PUSH and CALL.

The sample listing file in Figure 3-8 shows that the machine instructions are loaded into
memory as a sequence of integer values, expressed here in hexadecimal:  B8, 00000005, 83, C0,

06, 6A, 00, EB, 00000000. The number of digits in each number indicates the number of bits: a
2-digit number is 8 bits, a 4-digit number is 16 bits, an 8-digit number is 32 bits, and so on. So
our machine instructions are exactly 15 bytes long (two 4-byte values and seven 1-byte values).

Whenever you want to make sure the assembler is generating the correct machine code bytes
based on your program, the listing file is your best resource. It is also a great teaching tool if
you’re just learning how machine code instructions are generated.

Figure 3–9 Configuring Visual Studio to generate a listing file.

The rest of the listing file contains a list of structures and unions, as well as procedures, parame-
ters, and local variables. We will not show those elements here, but we will discuss them in later
chapters.

Tip: To tell Visual Studio to generate a listing file, do the following when a project is open:
Select Properties from the Project menu. Under Configuration Properties, select Microsoft
Macro Assembler. Then select Listing File. In the dialog window, set Generate Preprocessed
Source Listing to Yes, and set List All Available Information to Yes. The dialog window is shown
in Figure 3-9.


	Lecture No.6
	Lecture No.6-All



