Lecture No.3

Lecture Outlines

2.1 General Concepts
2.1.1 Basic Microcomputer Design
2.1.2 Instruction Execution Cycle
2.1.3 Reading from Memory
2.1.4 Loading and Executing a Program

2.2 32-Bit x86 Processors
2.2.1 Modes of Operation
2.2.2 Basic Execution Environment
2.2.3 x86 Memory Management

2.1 General Concepts

This chapter describes the architecture of the x86 processor family and its host computer sys-
tem from a programmer’s point of view. Included in this group are all Intel IA-32 and Intel 64
processors, such as the Intel Pentium and Core-Duo, as well as the Advanced Micro Devices
(AMD) processors, such as Athlon, Phenom, Opteron, and AMD64. Assembly language is a great
tool for learning how a computer works, and it requires you to have a working knowledge of com-
puter hardware. To that end, the concepts and details in this chapter will help you to understand
the assembly language code you write.

We strike a balance between concepts applying to all microcomputer systems and specifics
about x86 processors. You may work on various processors in the future, so we expose you to
broad concepts. To avoid giving you a superficial understanding of machine architecture, we focus
on specifics of the x86, which will give you a solid grounding when programming in assembly
language.

If you want to learn more about the Intel IA-32 architecture, read the Intel 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1: Basic Architecture. It’s a free download from the
Intel web site (www.intel.com).

2.1.1 Basic Microcomputer Design
Figure 2-1 shows the basic design of a hypothetical microcomputer. The central processor
unit (CPU), where calculations and logical operations take place, contains a limited number of
storage locations named registers, a high-frequency clock, a control unit, and an arithmetic
logic unit.
* The clock synchronizes the internal operations of the CPU with other system components.
* The control unit (CU) coordinates the sequencing of steps involved in executing machine
instructions.
* The arithmetic logic unit (ALU) performs arithmetic operations such as addition and subtrac-
tion and logical operations such as AND, OR, and NOT.

The CPU is attached to the rest of the computer via pins attached to the CPU socket in the
computer’s motherboard. Most pins connect to the data bus, the control bus, and the address bus.
The memory storage unit is where instructions and data are held while a computer program is
running. The storage unit receives requests for data from the CPU, transfers data from random
access memory (RAM) to the CPU, and transfers data from the CPU into memory. All process-
ing of data takes place within the CPU, so programs residing in memory must be copied into the
CPU before they can execute. Individual program instructions can be copied into the CPU one at
a time, or groups of instructions can be copied together.

A bus is a group of parallel wires that transfer data from one part of the computer to another.
A computer system usually contains four bus types: data, I/O, control, and address. The data bus
transfers instructions and data between the CPU and memory. The I/O bus transfers data

Fiqure 2—-1 Block diagram of a microcomputer.
Data bus, I/O bus

Central processor unit Memory storage dl/(') dI/Q
(CPU) unit evice evice
#1 #2

| ALU | | Clock |

Address bus

www.intel.com

between the CPU and the system input/output devices. The control bus uses binary signals to
synchronize actions of all devices attached to the system bus. The address bus holds the
addresses of instructions and data when the currently executing instruction transfers data
between the CPU and memory.

Clock Each operation involving the CPU and the system bus is synchronized by an internal
clock pulsing at a constant rate. The basic unit of time for machine instructions is a machine cycle
(or clock cycle). The length of a clock cycle is the time required for one complete clock pulse. In
the following figure, a clock cycle is depicted as the time between one falling edge and the next:

One cycle
1

The duration of a clock cycle is calculated as the reciprocal of the clock’s speed, which in
turn is measured in oscillations per second. A clock that oscillates 1 billion times per second
(1 GHz), for example, produces a clock cycle with a duration of one billionth of a second
(1 nanosecond).

A machine instruction requires at least one clock cycle to execute, and a few require in excess
of 50 clocks (the multiply instruction on the 8088 processor, for example). Instructions requiring
memory access often have empty clock cycles called wait states because of the differences in the
speeds of the CPU, the system bus, and memory circuits.

2.1.2 Instruction Execution Cycle

A single machine instruction does not just magically execute all at once. The CPU has to go
through a predefined sequence of steps to execute a machine instruction, called the instruction
execution cycle. Let’s assume that the instruction pointer register holds the address of the
instruction we want to execute. Here are the steps to execute it:

1. First, the CPU has to fetch the instruction from an area of memory called the instruction
queue. Right after doing this, it increments the instruction pointer.

2. Next, the CPU decodes the instruction by looking at its binary bit pattern. This bit pattern
might reveal that the instruction has operands (input values).

3. If operands are involved, the CPU fetches the operands from registers and memory. Some-
times, this involves address calculations.

4. Next, the CPU executes the instruction, using any operand values it fetched during the earlier
step. It also updates a few status flags, such as Zero, Carry, and Overflow.

5. Finally, if an output operand was part of the instruction, the CPU stores the result of its exe-
cution in the operand.

We usually simplify this complicated-sounding process to three basic steps: Fetch,

Decode, and Execute. An operand is a value that is either an input or an output to an opera-
tion. For example, the expression Z = X + Y has two input operands (X and Y) and a single
output operand (Z).

A block diagram showing data flow within a typical CPU is shown in Figure 2-2. The diagram
helps to show relationships between components that interact during the instruction execution
cycle. In order to read program instructions from memory, an address is placed on the address
bus. Next, the memory controller places the requested code on the data bus, making the code
available inside the code cache. The instruction pointer’s value determines which instruction will
be executed next. The instruction is analyzed by the instruction decoder, causing the appropriate

Figure 2-2 Simplified CPU block diagram.

1
1
z1
ol
Z| g! . .
o 3 : Code cache Instruction pointer
<
= =
Memory Al <l
1
1
Code : Instruction decoder
1
1
- - - |- ->:
1 .
Data 1 Control unit
1 }
1
: Floating-point unit
1 Registers
: ALU
1
1
1
: Data cache
1
H A
1
1

digital signals to be sent to the control unit, which coordinates the ALU and floating-point unit.
Although the control bus is not shown in this figure, it carries signals that use the system clock to
coordinate the transfer of data between the different CPU components.

2.1.3 Reading from Memory

As a rule, computers read memory much more slowly than they access internal registers. This is

because reading a single value from memory involves four separate steps:

1. Place the address of the value you want to read on the address bus.

2. Assert (change the value of) the processor’s RD (read) pin.

3. Wait one clock cycle for the memory chips to respond.

4. Copy the data from the data bus into the destination operand.
Each of these steps generally requires a single clock cycle, a measurement of time based on a

clock that ticks inside the processor at a regular rate. Computer CPUs are often described in
terms of their clock speeds. A speed of /.2 GHz, for example, means the clock ticks, or oscil-
lates, 1.2 billion times per second. So, 4 clock cycles go by fairly fast, considering each one lasts
for only 1/ 1,200,000,000th of a second. Still, that’s much slower than the CPU registers, which
are usually accessed in only one clock cycle.

Fortunately, CPU designers figured out a long time ago that computer memory creates a
speed bottleneck because most programs have to access variables. They came up with a clever
way to reduce the amount of time spent reading and writing memory—they store the most
recently used instructions and data in high-speed memory called cache. The idea is that a pro-
gram is more likely to want to access the same memory and instructions repeatedly, so cache
keeps these values where they can be accessed quickly. Also, when the CPU begins to execute a
program, it can look ahead and load the next thousand instructions (for example) into cache, on
the assumption that these instructions will be needed fairly soon. If there happens to be a loop in
that block of code, the same instructions will be in cache. When the processor is able to find its
data in cache memory, we call that a cache hit. On the other hand, if the CPU tries to find some-
thing in cache and it’s not there, we call that a cache miss.

Cache memory for the x86 family comes in two types. Level-1 cache (or primary cache)
is stored right on the CPU. Level-2 cache (or secondary cache) is a little bit slower, and
attached to the CPU by a high-speed data bus. The two types of cache work together in an
optimal way.

There’s a reason why cache memory is faster than conventional RAM—it’s because cache
memory is constructed from a special type of memory chip called static RAM. It’s expensive, but
it does not have to be constantly refreshed in order to keep its contents. On the other hand, con-
ventional memory, known as dynamic RAM, must be refreshed constantly. It’s much slower, but
cheaper.

2.1.4 Loading and Executing a Program

Before a program can run, it must be loaded into memory by a utility known as a program
loader. After loading, the operating system must point the CPU to the program’s entry point,
which is the address at which the program is to begin execution. The following steps break this
process down in more detail:

* The operating system (OS) searches for the program’s filename in the current disk directory.
If it cannot find the name there, it searches a predetermined list of directories (called paths)
for the filename. If the OS fails to find the program filename, it issues an error message.

e If the program file is found, the OS retrieves basic information about the program’s file from
the disk directory, including the file size and its physical location on the disk drive.

* The OS determines the next available location in memory and loads the program file into mem-
ory. It allocates a block of memory to the program and enters information about the program’s
size and location into a table (sometimes called a descriptor table). Additionally, the OS may
adjust the values of pointers within the program so they contain addresses of program data.

* The OS begins execution of the program’s first machine instruction (its entry point). As soon
as the program begins running, it is called a process. The OS assigns the process an identifi-
cation number (process ID), which is used to keep track of it while running.

* The process runs by itself. It is the OS’s job to track the execution of the process and to
respond to requests for system resources. Examples of resources are memory, disk files, and
input-output devices.

* When the process ends, it is removed from memory.

Tip: If you’re using any version of Microsoft Windows, press Ctrl-Alt-Delete and select the
Task Manager item. The Task Manager window lets you view lists of Applications and Pro-
cesses. Applications are the names of complete programs currently running, such as Windows
Explorer or Microsoft Visual C++. When you click on the Processes tab, you see a long list of
process names. Each of those processes is a small program running independently of all the
others. You can continuously track the amount of CPU time and memory used by each pro-
cess. In some cases, you can shut down a process by selecting its name and pressing the
Delete key.

2.2 32-Bit x86 Processors

In this section, we focus on the basic architectural features of all x86 processors. This includes
members of the Intel [A-32 family as well as all 32-bit AMD processors.

2.2.1 Modes of Operation

x86 processors have three primary modes of operation: protected mode, real-address mode, and
system management mode. A sub-mode, named virtual-8086, is a special case of protected
mode. Here are short descriptions of each:

Protected Mode Protected mode is the native state of the processor, in which all instructions
and features are available. Programs are given separate memory areas named segments, and the
processor prevents programs from referencing memory outside their assigned segments.

Virtual-8086 Mode While in protected mode, the processor can directly execute real-address
mode software such as MS-DOS programs in a safe environment. In other words, if a program
crashes or attempts to write data into the system memory area, it will not affect other programs
running at the same time. A modern operating system can execute multiple separate virtual-8086
sessions at the same time.

Real-Address Mode Real-address mode implements the programming environment of an
early Intel processor with a few extra features, such as the ability to switch into other modes.
This mode is useful if a program requires direct access to system memory and hardware
devices.

System Management Mode System management mode (SMM) provides an operating sys-
tem with a mechanism for implementing functions such as power management and system secu-
rity. These functions are usually implemented by computer manufacturers who customize the
processor for a particular system setup.

2.2.2 Basic Execution Environment

Address Space

In 32-bit protected mode, a task or program can address a linear address space of up to 4 GBytes.
Beginning with the P6 processor, a technique called extended physical addressing allows a total
of 64 GBytes of physical memory to be addressed. Real-address mode programs, on the other
hand, can only address a range of 1 MByte. If the processor is in protected mode and running
multiple programs in virtual-8086 mode, each program has its own 1-MByte memory area.

Fiqure 2-3 Basic program execution registers.

32-Bit General-Purpose Registers

EAX EBP
EBX ESP
ECX ESI
EDX EDI

16-Bit Segment Registers

EFLAGS CS ES
SS FS
EIP DS GS

Basic Program Execution Registers

Registers are high-speed storage locations directly inside the CPU, designed to be accessed at
much higher speed than conventional memory. When a processing loop is optimized for speed,
for example, loop counters are held in registers rather than variables. Figure 2-3 shows the basic
program execution registers. There are eight general-purpose registers, six segment registers, a
processor status flags register (EFLAGS), and an instruction pointer (EIP).

General-Purpose Registers The general-purpose registers are primarily used for arith-
metic and data movement. As shown in Figure 2-4, the lower 16 bits of the EAX register can be
referenced by the name AX.

Figure 2-4 General-purpose registers.

AH AL g bits + 8 bits

16 bits

32 bits

Portions of some registers can be addressed as 8-bit values. For example, the AX register has an
8-bit upper half named AH and an 8-bit lower half named AL. The same overlapping relationship
exists for the EAX, EBX, ECX, and EDX registers:

32-Bit 16-Bit 8-Bit (High) 8-Bit (Low)
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL

The remaining general-purpose registers can only be accessed using 32-bit or 16-bit names,
as shown in the following table:

32-Bit 16-Bit
ESI SI
EDI DI
EBP BP
ESP SP

Specialized Uses Some general-purpose registers have specialized uses:

* EAX is automatically used by multiplication and division instructions. It is often called the
extended accumulator register.

* The CPU automatically uses ECX as a loop counter.

* ESP addresses data on the stack (a system memory structure). It is rarely used for ordinary
arithmetic or data transfer. It is often called the extended stack pointer register.

* EST and EDI are used by high-speed memory transfer instructions. They are sometimes called
the extended source index and extended destination index registers.

* EBP is used by high-level languages to reference function parameters and local variables on
the stack. It should not be used for ordinary arithmetic or data transfer except at an advanced
level of programming. It is often called the extended frame pointer register.

Segment Registers In real-address mode, 16-bit segment registers indicate base addresses of
preassigned memory areas named segments. In protected mode, segment registers hold pointers
to segment descriptor tables. Some segments hold program instructions (code), others hold vari-
ables (data), and another segment named the stack segment holds local function variables and
function parameters.

Instruction Pointer The EIP, or instruction pointer, register contains the address of the next
instruction to be executed. Certain machine instructions manipulate EIP, causing the program to
branch to a new location.

EFLAGS Register The EFLAGS (or just Flags) register consists of individual binary bits
that control the operation of the CPU or reflect the outcome of some CPU operation. Some
instructions test and manipulate individual processor flags.

A flag is set when it equals 1; it is clear (or reset) when it equals 0.

Control Flags Control flags control the CPU’s operation. For example, they can cause the
CPU to break after every instruction executes, interrupt when arithmetic overflow is detected,
enter virtual-8086 mode, and enter protected mode.

Programs can set individual bits in the EFLAGS register to control the CPU’s operation.
Examples are the Direction and Interrupt flags.

Status Flags The status flags reflect the outcomes of arithmetic and logical operations per-
formed by the CPU. They are the Overflow, Sign, Zero, Auxiliary Carry, Parity, and Carry flags.
Their abbreviations are shown immediately after their names:
e The Carry flag (CF) is set when the result of an unsigned arithmetic operation is too large to
fit into the destination.
* The Overflow flag (OF) is set when the result of a signed arithmetic operation is too large or
too small to fit into the destination.
* The Sign flag (SF) is set when the result of an arithmetic or logical operation generates a
negative result.
* The Zero flag (ZF) is set when the result of an arithmetic or logical operation generates a
result of zero.

* The Auxiliary Carry flag (AC) is set when an arithmetic operation causes a carry from bit 3
to bit 4 in an 8-bit operand.

* The Parity flag (PF) is set if the least-significant byte in the result contains an even number
of 1 bits. Otherwise, PF is clear. In general, it is used for error checking when there is a possi-
bility that data might be altered or corrupted.

MMX Registers
MMX technology improves the performance of Intel processors when implementing advanced

multimedia and communications applications. The eight 64-bit MMX registers support special
instructions called SIMD (Single-Instruction, Multiple-Data). As the name implies, MMX
instructions operate in parallel on the data values contained in MMX registers. Although they
appear to be separate registers, the MMX register names are in fact aliases to the same registers
used by the floating-point unit.

XMM Registers
The x86 architecture also contains eight 128-bit registers called XMM registers. They are used

by streaming SIMD extensions to the instruction set.

10

Floating-Point Unit The floating-point unit (FPU) performs high-speed floating-point arith-
metic. At one time a separate coprocessor chip was required for this. From the Intel486 onward,
the FPU has been integrated into the main processor chip. There are eight floating-point data
registers in the FPU, named ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), and ST(7). The
remaining control and pointer registers are shown in Figure 2-5.

Fiqure 2-7 Floating-point unit registers.

80-Bit Data Registers
48-Bit Pointer Registers

ST(0)

FPU instruction pointer
ST(1)
ST(2) FPU data pointer
ST(3)
ST(4) 16-Bit Control Registers
ST(5) Tag register
ST(6) Control register
ST(7) Status register

Opcode register

2.2.3 x86 Memory Management

x86 processors manage memory according to the basic modes of operation discussed in
Section 2.2.1. Protected mode is the most robust and powerful, but it does restrict application
programs from directly accessing system hardware.

In real-address mode, only 1 MByte of memory can be addressed, from hexadecimal 00000
to FFFFF. The processor can run only one program at a time, but it can momentarily interrupt
that program to process requests (called interrupts) from peripherals. Application programs are
permitted to access any memory location, including addresses that are linked directly to system
hardware. The MS-DOS operating system runs in real-address mode, and Windows 95 and 98
can be booted into this mode.

In protected mode, the processor can run multiple programs at the same time. It assigns each
process (running program) a total of 4 GByte of memory. Each program can be assigned its own
reserved memory area, and programs are prevented from accidentally accessing each other’s
code and data. MS-Windows and Linux run in protected mode.

In virtual-8086 mode, the computer runs in protected mode and creates a virtual-8086
machine with its own 1-MByte address space that simulates an 80x86 computer running in real-
address mode. Windows NT and 2000, for example, create a virtual-8086 machine when you
open a Command window. You can run many such windows at the same time, and each is pro-
tected from the actions of the others. Some MS-DOS programs that make direct references to
computer hardware will not run in this mode under Windows NT, 2000, and XP.

