
Lecture No.2

1.3 Data Representation
1.3.1 Binary Integers
1.3.2 Binary Addition
1.3.3 Integer Storage Sizes
1.3.4 Hexadecimal Integers
1.3.5 Hexadecimal Addition
1.3.6 Signed Binary Integers
1.3.7 Binary Subtraction
1.3.8 Character Storage

1.4 Boolean Expressions
1.4.1 Truth Tables for Boolean Functions

Lecture Outlines

1.3 Data Representation
Assembly language programmers deal with data at the physical level, so they must be adept at
examining memory and registers. Often, binary numbers are used to describe the contents of
computer memory; at other times, decimal and hexadecimal numbers are used. You must develop

a certain fluency with number formats, so you can quickly translate numbers from one format to
another.

Each numbering format, or system, has a base, or maximum number of symbols that can be
assigned to a single digit. Table 1-2 shows the possible digits for the numbering systems used
most commonly in hardware and software manuals. In the last row of the table, hexadecimal
numbers use the digits 0 through 9 and continue with the letters A through F to represent deci-
mal values 10 through 15. It is quite common to use hexadecimal numbers when showing the
contents of computer memory and machine-level instructions.

1.3.1 Binary Integers
A computer stores instructions and data in memory as collections of electronic charges. Representing
these entities with numbers requires a system geared to the concepts of on and off or true and false.
Binary numbers are base 2 numbers, in which each binary digit (called a bit) is either 0 or 1. Bits are
numbered sequentially starting at zero on the right side and increasing toward the left. The bit on the
left is called the most significant bit (MSB), and the bit on the right is the least significant bit (LSB).
The MSB and LSB bit numbers of a 16-bit binary number are shown in the following figure:

0 Bit number15

MSB LSB

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0

1

2

Binary integers can be signed or unsigned. A signed integer is positive or negative. An
unsigned integer is by default positive. Zero is considered positive. When writing down large
binary numbers, many people like to insert a dot every 4 bits or 8 bits to make the numbers eas-
ier to read. Examples are 1101.1110.0011.1000.0000 and 11001010.10101100.

Unsigned Binary Integers
Starting with the LSB, each bit in an unsigned binary integer represents an increasing power of
2. The following figure contains an 8-bit binary number, showing how powers of two increase
from right to left:

Table 1-3 lists the decimal values of 20 through 215.

1 1 1 1 1 1 1

26 25 24 23 22 21 20

1

27

1

Table 1-2 Binary, Octal, Decimal, and Hexadecimal Digits.

System Base Possible Digits

Binary 2

Octal 8

Decimal 10

Hexadecimal 16

0 1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 A B C D E F

Translating Unsigned Binary Integers to Decimal
Weighted positional notation represents a convenient way to calculate the decimal value of an
unsigned binary integer having n digits:

dec � (Dn�1 � 2n�1) � (Dn�2 � 2n�2) � ��� � (D1 � 21) � (D0 � 20)

D indicates a binary digit. For example, binary 00001001 is equal to 9. We calculate this value
by leaving out terms equal to zero:

(1 � 23) � (1 � 20) � 9

Table 1-3 Binary Bit Position Values.

 2n Decimal Value 2n Decimal Value

20 821 256

21 2 92 512

22 4 102 1024

23 8 112 2048

24 16 212 4096

25 32 213 8192

26 64 214 16384

27 128 215 32768

3

The same calculation is shown by the following figure:

Translating Unsigned Decimal Integers to Binary
To translate an unsigned decimal integer into binary, repeatedly divide the integer by 2, saving each
remainder as a binary digit. The following table shows the steps required to translate decimal 37 to
binary. The remainder digits, starting from the top row, are the binary digits D0, D1, D2, D3, D4, and D5:

Division Quotient Remainder

37 / 2 18 1

18 / 2 9 0

9 / 2 4 1

4 / 2 2 0

2 / 2 1 0

1 / 2 0 1

8

� 1

9

10010000

We can concatenate the binary bits from the remainder column of the table in reverse order
(D5, D4, . . .) to produce binary 100101. Because computer storage always consists of binary
numbers whose lengths are multiples of 8, we fill the remaining two digit positions on the left
with zeros, producing 00100101.

1.3.2 Binary Addition
When adding two binary integers, proceed bit by bit, starting with the low-order pair of bits (on
the right) and add each subsequent pair of bits. There are four ways to add two binary digits, as
shown here:

Tip: How many bits? There’s a simple formula to find b, the number of binary bits you need to
represent the unsigned decimal value n. It is b = ceiling (log2 n). If n = 17, for example, log2 17 =
4.087463, which when raised to the smallest following integer, equals 5. Most calculators don’t
have a log base 2 operation, but you can find web pages that will calculate it for you.

0 � 0 � 0 � 1 �0 1

1 � 0 � 1 � 1 �1 10

4

When adding 1 to 1, the result is 10 binary (think of it as the decimal value 2). The extra
digit generates a carry to the next-highest bit position. In the following figure, we add binary
00000100 to 00000111:

Beginning with the lowest bit in each number (bit position 0), we add 0 � 1, producing a 1 in
the bottom row. The same happens in the next highest bit (position 1). In bit position 2, we add
1 � 1, generating a sum of zero and a carry of 1. In bit position 3, we add the carry bit to 0 � 0,
producing 1. The rest of the bits are zeros. You can verify the addition by adding the decimal
equivalents shown on the right side of the figure (4 � 7 � 11).

Sometimes a carry is generated out of the highest bit position. When that happens, the size
of the storage area set aside becomes important. If we add 11111111 to 00000001, for exam-
ple, a 1 carries out of the highest bit position, and the lowest 8 bits of the sum equal all zeros.
If the storage location for the sum is at least 9 bits long, we can represent the sum as
100000000. But if the sum can only store 8 bits, it will equal to 00000000, the lowest 8 bits of
the calculated value.

0 0 0 0 1 1

0 0 0 0 1 0

�

0 0 0 1 0 1

1

(4)

(7)

(11)

Carry:

1

0

1

01234Bit position: 56

0

0

0

7

1.3.3 Integer Storage Sizes
The basic storage unit for all data in an x86 computer is a byte, containing 8 bits. Other
storage sizes are word (2 bytes), doubleword (4 bytes), and quadword (8 bytes). In the following
figure, the number of bits is shown for each size:

16

8

32

64

128

Byte

Word

Doubleword

Quadword

Double quadword

5

Table 1-4 shows the range of possible values for each type of unsigned integer.

Large Measurements A number of large measurements are used when referring to both
memory and disk space:

• One kilobyte is equal to 210, or 1024 bytes.

• One megabyte (1 MByte) is equal to 220, or 1,048,576 bytes.

• One gigabyte (1 GByte) is equal to 230, or 10243, or 1,073,741,824 bytes.

• One terabyte (1 TByte) is equal to 240, or 10244, or 1,099,511,627,776 bytes.

• One petabyte is equal to 250, or 1,125,899,906,842,624 bytes.

• One exabyte is equal to 260, or 1,152,921,504,606,846,976 bytes.

• One zettabyte is equal to 270 bytes.

• One yottabyte is equal to 280 bytes.

1.3.4 Hexadecimal Integers

Large binary numbers are cumbersome to read, so hexadecimal digits offer a convenient way to
represent binary data. Each digit in a hexadecimal integer represents four binary bits, and two
hexadecimal digits together represent a byte. A single hexadecimal digit represents decimal 0 to
15, so letters A to F represent decimal values in the range 10 through 15. Table 1-5 shows how
each sequence of four binary bits translates into a decimal or hexadecimal value.

Table 1-4 Ranges and Sizes of Unsigned Integer Types.

Type Range
Storage Size

in Bits

Unsigned byte 0 to 28 − 1 8

Unsigned word 0 to 216 − 1 16

Unsigned doubleword 0 to 232 − 1 32

Unsigned quadword 0 to 264 − 1 64

Unsigned double quadword 0 to 2128− 1 128

6

The following example shows how binary 0001 0110 1010 0111 1001 0100 is equivalent to
hexadecimal 16A794:

Converting Unsigned Hexadecimal to Decimal
In hexadecimal, each digit position represents a power of 16. This is helpful when calculating the
decimal value of a hexadecimal integer. Suppose we number the digits in a four-digit hexadecimal
integer with subscripts as D3D2D1D0. The following formula calculates the integer’s decimal value:

dec � (D3 � 163) � (D2 � 162) � (D1 � 161) � (D0 � 160)

The formula can be generalized for any n-digit hexadecimal integer:

dec � (Dn�1 � 16n�1) � (Dn�2 � 16n�2) � � � � � (D1 � 161) � (D0 � 160)

For example, hexadecimal 1234 is equal to (1 � 163) � (2 � 162) � (3 � 161) � (4 � 160), or
decimal 4660. Similarly, hexadecimal 3BA4 is equal to (3 � 163) � (11 � 162) � (10 � 161) �

(4 � 160), or decimal 15,268. The following figure shows this last calculation:

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary Decimal Hexadecimal Binary Decimal Hexadecimal

0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 10 A

0011 3 3 1011 11 B

0100 4 4 1100 12 C

0101 5 5 1101 13 D

0110 6 6 1110 14 E

0111 7 7 1111 15 F

1 6 A 7 9 4

0001 0110 1010 0111 1001 0100

In general, you can convert an n-digit integer in any base B to decimal using the following
formula: dec = (Dn�1 � Bn�1) � (Dn�2 � Bn�2) � � � � � (D1 × B1) � (D0 � B0).

Total: 15,2684AB3

 3 × 163 � 12,288

11 × 162 � 2,816

10 × 161 � 160

 4 × 160 � � 4

7

Table 1-6 lists the powers of 16 from 160 to 167.

Converting Unsigned Decimal to Hexadecimal
To convert an unsigned decimal integer to hexadecimal, repeatedly divide the decimal value by
16 and retain each remainder as a hexadecimal digit. For example, the following table lists the
steps when converting decimal 422 to hexadecimal:

The resulting hexadecimal number is assembled from the digits in the remainder column, start-
ing from the last row and working upward to the top row. In this example, the hexadecimal rep-
resentation is 1A6. The same algorithm was used for binary integers in Section 1.3.1. To convert
from decimal into some other number base other than hexadecimal, replace the divisor (16) in
each calculation with the desired number base.

1.3.5 Hexadecimal Addition
Debugging utility programs (known as debuggers) usually display memory addresses in hexa-
decimal. It is often necessary to add two addresses in order to locate a new address. Fortu-
nately, hexadecimal addition works the same way as decimal addition, if you just change the
number base.

Suppose we want to add two numbers X and Y, using numbering base b. We will number
their digits from the lowest position (x0) to the highest. If we add digits xi and yi in X and
Y, we produce the value si. If , we recalculate si � (si MOD b) and generate a carry
value of 1. When we move to the next pair of digits xi+1 and yi+1, we add the carry value to
their sum.

For example, let’s add the hexadecimal values 6A2 and 49A. In the lowest digit position,
2 � A � decimal 12, so there is no carry and we use C to indicate the hexadecimal sum
digit. In the next position, A � 9 � decimal 19, so there is a carry because , the num-
ber base. We calculate 19 MOD 16 � 3, and carry a 1 into the third digit position. Finally,
we add 1 � 6 � 4 � decimal 11, which is shown as the letter B in the third position of the
sum. The hexadecimal sum is B3C.

Table 1-6 Powers of 16 in Decimal.

16n Decimal Value 16n Decimal Value

160 1 164 65,536

161 16 165 1,048,576

162 256 166 16,777,216

163 4096 167 268,435,456

Division Quotient Remainder

422 / 16 26 6

26 / 16 1 A

1 / 16 0 1

si b≥

19 16≥

8

1.3.6 Signed Binary Integers
Signed binary integers are positive or negative. For x86 processors, the MSB indicates the
sign: 0 is positive and 1 is negative. The following figure shows examples of 8-bit negative
and positive integers:

Two’s-Complement Representation
Negative integers use two’s-complement representation, using the mathematical principle that
the two’s complement of an integer is its additive inverse. (If you add a number to its additive
inverse, the sum is zero.)

Two’s-complement representation is useful to processor designers because it removes the need
for separate digital circuits to handle both addition and subtraction. For example, if presented with
the expression A � B, the processor can simply convert it to an addition expression: A � (�B).

The two’s complement of a binary integer is formed by inverting (complementing) its bits
and adding 1. Using the 8-bit binary value 00000001, for example, its two’s complement turns
out to be 11111111, as can be seen as follows:

11111111 is the two’s-complement representation of �1. The two’s-complement operation is
reversible, so the two’s complement of 11111111 is 00000001.

Hexadecimal Two’s Complement To create the two’s complement of a hexadecimal integer,
reverse all bits and add 1. An easy way to reverse the bits of a hexadecimal digit is to subtract the
digit from 15. Here are examples of hexadecimal integers converted to their two’s complements:

6A3D --> 95C2 + 1 --> 95C3
95C3 --> 6A3C + 1 --> 6A3D

Carry 1

X 6 A 2

Y 4 9 A

S B 3 C

Starting value 00000001

Step 1: Reverse the bits 11111110

Step 2: Add 1 to the value from Step 1 11111110
+00000001

Sum: Two’s-complement representation 11111111

1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

Sign bit

Negative

Positive

1

9

Converting Signed Binary to Decimal Use the following algorithm to calculate the decimal
equivalent of a signed binary integer:

• If the highest bit is a 1, the number is stored in two’s-complement notation. Create its two’s
complement a second time to get its positive equivalent. Then convert this new number to
decimal as if it were an unsigned binary integer.

• If the highest bit is a 0, you can convert it to decimal as if it were an unsigned binary integer.

For example, signed binary 11110000 has a 1 in the highest bit, indicating that it is a negative
integer. First we create its two’s complement, and then convert the result to decimal. Here are the
steps in the process:

Because the original integer (11110000) was negative, we know that its decimal value is −16.

Converting Signed Decimal to Binary To create the binary representation of a signed deci-
mal integer, do the following:

1. Convert the absolute value of the decimal integer to binary.
2. If the original decimal integer was negative, create the two’s complement of the binary num-

ber from the previous step.

For example, −43 decimal is translated to binary as follows:

1. The binary representation of unsigned 43 is 00101011.
2. Because the original value was negative, we create the two’s complement of 00101011,

which is 11010101. This is the representation of −43 decimal.

Converting Signed Decimal to Hexadecimal To convert a signed decimal integer to hexa-
decimal, do the following:

1. Convert the absolute value of the decimal integer to hexadecimal.
2. If the decimal integer was negative, create the two’s complement of the hexadecimal number

from the previous step.

Converting Signed Hexadecimal to Decimal To convert a signed hexadecimal integer to
decimal, do the following:

1. If the hexadecimal integer is negative, create its two’s complement; otherwise, retain the
integer as is.

2. Using the integer from the previous step, convert it to decimal. If the original value was nega-
tive, attach a minus sign to the beginning of the decimal integer.

Starting value 11110000

Step 1: Reverse the bits 00001111

Step 2: Add 1 to the value from Step 1 00001111
+ 1

Step 3: Create the two’s complement 00010000

Step 4: Convert to decimal 16

You can tell whether a hexadecimal integer is positive or negative by inspecting its most signifi-
cant (highest) digit. If the digit is ≥ 8, the number is negative; if the digit is ≤ 7, the number is pos-
itive. For example, hexadecimal 8A20 is negative and 7FD9 is positive.

10

Maximum and Minimum Values
A signed integer of n bits uses only n � 1 bits to represent the number’s magnitude. Table 1-7
shows the minimum and maximum values for signed bytes, words, doublewords, and quadwords.

1.3.7 Binary Subtraction
Subtracting a smaller unsigned binary number from a large one is easy if you go about it in the
same way you handle decimal subtraction. Here’s an example:

 0 1 1 0 1 (decimal 13)
- 0 0 1 1 1 (decimal 7)

Subtracting the bits in position 0 is straightforward:

 0 1 1 0 1
- 0 0 1 1 1

0

In the next position (0 – 1), we are forced to borrow a 1 from the next position to the left. Here’s
the result of subtracting 1 from 2:

 0 1 0 0 1
- 0 0 1 1 1

1 0

In the next bit position, we again have to borrow a bit from the column just to the left and sub-
tract 1 from 2:

 0 0 0 1 1
- 0 0 1 1 1

1 1 0

Finally, the two high-order bits are zero minus zero:

 0 0 0 1 1
- 0 0 1 1 1

 0 0 1 1 0 (decimal 6)

Table 1-7 Ranges and Sizes of Signed Integer Types.

Type Range Storage Size in Bits

Signed byte –27 to +27– 1 8

Signed word –215 to +215– 1 16

Signed doubleword –231 to +231– 1 32

Signed quadword –263 to +263– 1 64

Signed double quadword –2127 to +2127– 1 128

11

A simpler way to approach binary subtraction is to reverse the sign of the value being subtracted,
and then add the two values. This method requires you to have an extra empty bit to hold the
number’s sign. Let’s try it with the same problem we just calculated: (01101 minus 00111).
First, we negate 00111 by inverting its bits (11000) and adding 1, producing 11001. Next, we
add the binary values and ignore the carry out of the highest bit:

0 1 1 0 1 (+13)
1 1 0 0 1 (-7)

0 0 1 1 0 (+6)

The result, +6, is exactly what we expected.

1.3.8 Character Storage

If computers only store binary data, how do they represent characters? They use a character set,
which is a mapping of characters to integers. In earlier times, character sets used only 8 bits. Even
now, when running in character mode (such as MS-DOS), IBM-compatible microcomputers use
the ASCII (pronounced “askey”) character set. ASCII is an acronym for American Standard Code
for Information Interchange. In ASCII, a unique 7-bit integer is assigned to each character.
Because ASCII codes use only the lower 7 bits of every byte, the extra bit is used on various com-
puters to create a proprietary character set. On IBM-compatible microcomputers, for example,
values 128 through 255 represent graphic symbols and Greek characters.

ANSI Character Set The American National Standards Institute (ANSI) defines an 8-bit
character set that represents up to 256 characters. The first 128 characters correspond to the
letters and symbols on a standard U.S. keyboard. The second 128 characters represent spe-
cial characters such as letters in international alphabets, accents, currency symbols, and
fractions. Early version of Microsoft Windows used the ANSI character set.

Unicode Standard Today, computers must be able to represent a wide variety of international
languages in computer software. As a result, the Unicode standard was created as a universal
way of defining characters and symbols. It defines numeric codes (called code points) for char-
acters, symbols, and punctuation used in all major languages, as well as European alphabetic
scripts, Middle Eastern right-to-left scripts, and many scripts of Asia. Three transformation for-
mats are used to transform code points into displayable characters:

• UTF-8 is used in HTML, and has the same byte values as ASCII.

• UTF-16 is used in environments that balance efficient access to characters with economical
use of storage. Recent versions of Microsoft Windows, for example, use UTF-16 encoding.
Each character is encoded in 16 bits.

• UTF-32 is used in environments where space is no concern and fixed-width characters are
required. Each character is encoded in 32 bits.

12

Using the ASCII Table A table on the inside back cover of this book lists ASCII codes used
when running in Windows Console mode. To find the hexadecimal ASCII code of a character, look
along the top row of the table and find the column containing the character you want to translate.
The most significant digit of the hexadecimal value is in the second row at the top of the table; the
least significant digit is in the second column from the left. For example, to find the ASCII code of
the letter a, find the column containing the a and look in the second row: The first hexadecimal digit
is 6. Next, look to the left along the row containing a and note that the second column contains the
digit 1. Therefore, the ASCII code of a is 61 hexadecimal. This is shown as follows in simplified
form:

ASCII Control Characters Character codes in the range 0 through 31 are called ASCII
control characters. If a program writes these codes to standard output (as in C++), the con-
trol characters will carry out predefined actions. Table 1-8 lists the most commonly used
characters in this range, and a complete list may be found in the inside front cover of this
book.

a

6

1

Table 1-8 ASCII Control Characters.

ASCII Code (Decimal) Description

8 Backspace (moves one column to the left)

9 Horizontal tab (skips forward n columns)

10 Line feed (moves to next output line)

12 Form feed (moves to next printer page)

13 Carriage return (moves to leftmost output column)

27 Escape character

ASCII Strings A sequence of one or more characters is called a string. More specifically, an ASCII
string is stored in memory as a succession of bytes containing ASCII codes. For example, the numeric
codes for the string “ABC123” are 41h, 42h, 43h, 31h, 32h, and 33h. A null-terminated string is a string
of characters followed by a single byte containing zero. The C and C++ languages use null-terminated
strings, and many Windows operating system functions require strings to be in this format.

13

• A digit string is a string of ASCII characters, such as “123” or “65.” This is simply a repre-
sentation of the number and can be in any of the formats shown for the decimal number 65 in
Table 1-9:

Table 1-9 Types of Digit Strings.

Format Value

Binary digit string “01000001”

Decimal digit string “65”

Hexadecimal digit string “41”

Octal digit string “101”

Terminology for Numeric Data Representation It is important to use precise terminology
when describing the way numbers and characters are represented in memory and on the display
screen. Decimal 65, for example, is stored in memory as a single binary byte as 01000001.
A debugging program would probably display the byte as “41,” which is the number’s hexadeci-
mal representation. If the byte were copied to video memory, the letter “A” would appear on the
screen because 01000001 is the ASCII code for the letter A. Because a number’s interpretation
can depend on the context in which it appears, we assign a specific name to each type of data
representation to clarify future discussions:

• A binary integer is an integer stored in memory in its raw format, ready to be used in a calcu-
lation. Binary integers are stored in multiples of 8 bits (such as 8, 16, 32, or 64).

1.4 Boolean Expressions
Boolean algebra defines a set of operations on the values true and false. It was invented by George
Boole, a mid-nineteenth-century mathematician. When early digital computers were invented, it
was found that Boole’s algebra could be used to describe the design of digital circuits. At the same
time, boolean expressions are used in computer programs to express logical operations.

A boolean expression involves a boolean operator and one or more operands. Each boolean
expression implies a value of true or false. The set of operators includes the following:

• NOT: notated as ¬ or ~ or ’

• AND: notated as ∧ or •

• OR: notated as ∨ or �

The NOT operator is unary, and the other operators are binary. The operands of a boolean

expression can also be boolean expressions. The following are examples:

14

NOT The NOT operation reverses a boolean value. It can be written in mathematical notation
as ¬X, where X is a variable (or expression) holding a value of true (T) or false (F). The follow-
ing truth table shows all the possible outcomes of NOT using a variable X. Inputs are on the left
side and outputs (shaded) are on the right side:

A truth table can use 0 for false and 1 for true.

AND The Boolean AND operation requires two operands, and can be expressed using the notation
X ∧ Y. The following truth table shows all the possible outcomes (shaded) for the values of X and Y:

Expression Description

¬X NOT X

X ∧ Y X AND Y

X ∨ Y X OR Y

¬X ∨ Y (NOT X) OR Y

¬(X ∧ Y) NOT (X AND Y)

X ∧ ¬Y X AND (NOT Y)

X ¬X

F T

T F

X Y X ∧ Y

F F F

F T F

T F F

T T T

The output is true only when both inputs are true. This corresponds to the logical AND used
in compound boolean expressions in C++ and Java.

The AND operation is often carried out at the bit level in assembly language. In the following
example, each bit in X is ANDed with its corresponding bit in Y:

X: 11111111

Y: 00011100

X ∧ Y: 00011100

15

As Figure 1-2 shows, each bit of the resulting value, 00011100, represents the result of ANDing
the corresponding bits in X and Y.

Figure 1–2 ANDing the bits of two binary integers.

OR The Boolean OR operation requires two operands, and is often expressed using the nota-
tion X ∨ Y. The following truth table shows all the possible outcomes (shaded) for the values of
X and Y:

The output is false only when both inputs are false. This truth table corresponds to the
logical OR used in compound boolean expressions in C++ and Java.

The OR operation is often carried out at the bit level. In the following example, each bit in X
is ORed with its corresponding bit in Y, producing 11111100:

X: 11101100

Y: 00011100

X ∨ Y: 11111100

X Y X ∨ Y

F F F

F T T

T F T

T T T

1 1 1 1 1 1 1 1

0 0 0 1 1 1 0 0

0

X:

Y:

X^Y: 0 0 1 1 1 0 0

AND AND AND AND AND AND AND AND

16

As shown in Figure 1-3, the bits are ORed individually, producing a corresponding bit in the
result.

Figure 1–3 ORing the bits in two binary integers.

Operator Precedence Operator precedence rules are used to indicate which operators exe-
cute first in expressions involving multiple operators. In a boolean expression involving more
than one operator, precedence is important. As shown in the following table, the NOT operator
has the highest precedence, followed by AND and OR. You can use parentheses to force the ini-
tial evaluation of an expression:

1.4.1 Truth Tables for Boolean Functions
A boolean function receives boolean inputs and produces a boolean output. A truth table can be
constructed for any boolean function, showing all possible inputs and outputs. The following are
truth tables representing boolean functions having two inputs named X and Y. The shaded col-
umn on the right is the function’s output:

Expression Order of Operations

¬X ∨ Y NOT, then OR

¬(X ∨ Y) OR, then NOT

X ∨ (Y ∧ Z) AND, then OR

1 1 1 0 1 1 0 0

0 0 0 1 1 1 0 0

1 1 1 1 1 1 0 0

OR OR OR OR OR OR OR OR

X:

Y:

X Y:

^

17

Example 1: ¬X ∨ Y

Example 2: X ∧ ¬Y

Example 3: (Y ∧ S) ∨ (X ∧ ¬S)

X ¬X Y ¬X ∨ Y

F T F T

F T T T

T F F F

T F T T

X Y ¬Y X ∧¬Y

F F T F

F T F F

T F T T

T T F F

X Y S Y ∧ S ¬S X ∧¬S (Y ∧ S) ∨ (X ∧ ¬S)

F F F F T F F

F T F F T F F

T F F F T T T

T T F F T T T

F F T F F F F

F T T T F F T

T F T F F F F

T T T T F F T

The boolean function in Example 3 describes a multiplexer, a digital component that uses
a selector bit (S) to select one of two outputs (X or Y). If S � false, the function output (Z) is
the same as X. If S � true, the function output is the same as Y. Here is a block diagram of a
multiplexer:

mux
X

Y

S

Z

	Blank Page

