
1

Lecture No.2

1.3 A Brief History of Computers

The First Generation: Vacuum Tubes 
The Second Generation: Transistors 
The Third Generation: Integrated Circuits 
Later Generations

Lecture Outlines

Learning Objectives
After studying this lecture, you should be able to:

r Present an overview of the evolution of computer technology from early 
digital computers to the latest microprocessors.

1.3 a BrieF hiStOry OF cOmputerS

In this section, we provide a brief overview of the history of the development of 
computers. This history is interesting in itself, but more importantly, provides a basic 
introduction to many important concepts that we deal with throughout the book.

The First Generation: Vacuum Tubes

The first generation of computers used vacuum tubes for digital logic elements and 
memory. A number of research and then commercial computers were built using 
vacuum tubes. For our purposes, it will be instructive to examine perhaps the most 
famous  first-  generation computer, known as the IAS computer.

A fundamental design approach first implemented in the IAS computer is 
known as the  stored-  program concept. This idea is usually attributed to the mathem-
atician John von Neumann. Alan Turing developed the idea at about the same time. 
The first publication of the idea was in a 1945 proposal by von Neumann for a new 
computer, the EDVAC (Electronic Discrete Variable Computer).

In 1946, von Neumann and his colleagues began the design of a new  stored- 
 program computer, referred to as the IAS computer, at the Princeton Institute for 
Advanced Studies. The IAS computer, although not completed until 1952, is the 
prototype of all subsequent  general-  purpose computers.

Figure 1.6 shows the structure of the IAS computer (compare with Figure 1.1). 
It consists of

■ A main memory, which stores both data and instructions
■ An arithmetic and logic unit (ALU) capable of operating on binary data



 ■ A control unit, which interprets the instructions in memory and causes them 
to be executed

 ■  Input–  output (I/O) equipment operated by the control unit

Control
circuits

Addresses

Control
signals

Instructions
and data

AC: Accumulator register
MQ: multiply-quotient register
MBR: memory buffer register
IBR: instruction buffer register
PC: program counter
MAR: memory address register
IR: insruction register

Instructions
and data

M(0)
M(1)
M(2)
M(3)
M(4)

M(4095)
M(4093)
M(4092)

MBR

Arithmetic-logic unit (CA)

Central processing unit (CPU)

Program control unit (CC)

Input-
output

equipment
(I, O)

Main
memory

(M)

AC MQ

Arithmetic-logic
circuits

IBRPC

IRMAR

Figure 1.6 IAS Structure

With rare exceptions, all of today’s computers have this same general structure 
and function and are thus referred to as von Neumann machines. Thus, it is worth-
while at this point to describe briefly the operation of the IAS computer [BURK46, 
GOLD54]. Following [HAYE98], the terminology and notation of von Neumann 

2



are changed in the following to conform more closely to modern usage; the exam-
ples accompanying this discussion are based on that latter text.

The memory of the IAS consists of 4,096 storage locations, called words, of 
40 binary digits (bits) each. Both data and instructions are stored there. Numbers are 
represented in binary form, and each instruction is a binary code. Figure 1.7 illustrates 
these formats. Each number is represented by a sign bit and a 39-bit value. A word 
may alternatively contain two 20-bit instructions, with each instruction consisting 
of an 8-bit operation code (opcode) specifying the operation to be performed and 
a 12-bit address designating one of the words in memory (numbered from 0 to 999).

The control unit operates the IAS by fetching instructions from memory 
and executing them one at a time. We explain these operations with reference to 
 Figure 1.6. This figure reveals that both the control unit and the ALU contain stor-
age locations, called registers, defined as follows:

 ■ Memory buffer register (MBR):  Contains a word to be stored in memory or sent 
to the I/O unit, or is used to receive a word from memory or from the I/O unit.

 ■ Memory address register (MAR): Specifies the address in memory of the word 
to be written from or read into the MBR.

 ■ Instruction register (IR):  Contains the 8-bit opcode instruction being executed.
 ■ Instruction buffer register (IBR): Employed to hold temporarily the  right- 

 hand instruction from a word in memory.
 ■ Program counter (PC): Contains the address of the next instruction pair to be 

fetched from memory.
 ■ Accumulator (AC) and multiplier quotient (MQ): Employed to hold tem-

porarily operands and results of ALU operations. For example, the result 

(a) Number wordsign bit

0 39

(b) Instruction word

opcode (8 bits) address (12 bits)

left instruction (20 bits)

0 8 20 28 39

1

right instruction (20 bits)

opcode (8 bits) address (12 bits)

Figure 1.7 IAS Memory Formats

3



of multiplying two 40-bit numbers is an 80-bit number; the most significant 
40 bits are stored in the AC and the least significant in the MQ.

The IAS operates by repetitively performing an instruction cycle, as shown in 
Figure 1.8. Each instruction cycle consists of two subcycles. During the fetch cycle, 
the opcode of the next instruction is loaded into the IR and the address portion is 
loaded into the MAR. This instruction may be taken from the IBR, or it can be 
obtained from memory by loading a word into the MBR, and then down to the IBR, 
IR, and MAR.

Why the indirection? These operations are controlled by electronic circuitry 
and result in the use of data paths. To simplify the electronics, there is only one reg-
ister that is used to specify the address in memory for a read or write and only one 
register used for the source or destination.

Start

Is next
instruction

in IBR?
MAR        PC

MBR        M(MAR)

IR        IBR (0:7)
MAR        IBR (8:19)

IR         MBR (20:27)
MAR        MBR (28:39)

Left
instruction
required?

IBR        MBR (20:39)
IR        MBR (0:7)

MAR        MBR (8:19)

PC        PC + 1

Yes

Yes

Yes

No

No

No

M(X) = contents of memory location whose address is X
(i:j) = bits i through j

No memory
access

required

Decode instruction in IR

AC        M(X) Go to M(X, 0:19) If AC > 0 then
go to M(X, 0:19)

AC        AC + M(X)

Is AC > 0?

MBR       M(MAR) MBR       M(MAR)PC        MAR

AC        MBR AC        AC + MBR

Fetch
cycle

Execution
cycle

Figure 1.8 Partial Flowchart of IAS Operation

4



Once the opcode is in the IR, the execute cycle is performed. Control circuitry 
interprets the opcode and executes the instruction by sending out the appropri-
ate control signals to cause data to be moved or an operation to be performed by 
the ALU.

The IAS computer had a total of 21 instructions, which are listed in Table 1.1. 
These can be grouped as follows:

 ■ Data transfer: Move data between memory and ALU registers or between two 
ALU registers.

 ■ Unconditional branch: Normally, the control unit executes instructions in 
sequence from memory. This sequence can be changed by a branch instruc-
tion, which facilitates repetitive operations.

Table 1.1 The IAS Instruction Set

Instruction 
Type Opcode

Symbolic 
Representation Description

Data transfer

00001010 LOAD MQ Transfer contents of register MQ to the accumulator AC

00001001 LOAD MQ,M(X) Transfer contents of memory location X to MQ

00100001 STOR M(X) Transfer contents of accumulator to memory location X

00000001 LOAD M(X) Transfer M(X) to the accumulator

00000010 LOAD –M(X) Transfer –M(X) to the accumulator

00000011 LOAD |M(X)| Transfer absolute value of M(X) to the accumulator

00000100 LOAD –|M(X)| Transfer –|M(X)| to the accumulator

Unconditional  
branch

00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)

00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)

Conditional 
branch

00001111 JUMP + M(X,0:19) If number in the accumulator is nonnegative, take next 
instruction from left half of M(X)

00010000 JUMP + M(X,20:39) If number in the accumulator is nonnegative, take next 
instruction from right half of M(X)

Arithmetic

00000101 ADD M(X) Add M(X) to AC; put the result in AC

00000111 ADD |M(X)| Add |M(X)| to AC; put the result in AC

00000110 SUB M(X) Subtract M(X) from AC; put the result in AC

00001000 SUB |M(X)| Subtract |M(X)| from AC; put the remainder in AC

00001011 MUL M(X) Multiply M(X) by MQ; put most significant bits of result 
in AC, put least significant bits in MQ

00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ and the 
remainder in AC

00010100 LSH Multiply accumulator by 2; that is, shift left one bit position

00010101 RSH Divide accumulator by 2; that is, shift right one position

Address 
modify

00010010 STOR M(X,8:19) Replace left address field at M(X) by 12 rightmost bits 
of AC

00010011 STOR M(X,28:39) Replace right address field at M(X) by 12 rightmost bits 
of AC

5



 ■ Conditional branch: The branch can be made dependent on a condition, thus 
allowing decision points.

 ■ Arithmetic: Operations performed by the ALU.
 ■ Address modify: Permits addresses to be computed in the ALU and then 

inserted into instructions stored in memory. This allows a program consider-
able addressing flexibility.

Table 1.1 presents instructions (excluding I/O instructions) in a symbolic, 
 easy-  to-  read form. In binary form, each instruction must conform to the format of 
Figure 1.7b. The opcode portion (first 8 bits) specifies which of the 21 instructions is 
to be executed. The address portion (remaining 12 bits) specifies which of the 4,096 
memory locations is to be involved in the execution of the instruction.

Figure 1.8 shows several examples of instruction execution by the control unit. 
Note that each operation requires several steps, some of which are quite elaborate. 
The multiplication operation requires 39 suboperations, one for each bit position 
except that of the sign bit.

The Second Generation: Transistors

The first major change in the electronic computer came with the replacement of the 
vacuum tube by the transistor. The transistor, which is smaller, cheaper, and gener-
ates less heat than a vacuum tube, can be used in the same way as a vacuum tube to 
construct computers. Unlike the vacuum tube, which requires wires, metal plates, a 
glass capsule, and a vacuum, the transistor is a  solid-  state device, made from silicon.

The transistor was invented at Bell Labs in 1947 and by the 1950s had launched 
an electronic revolution. It was not until the late 1950s, however, that fully transis-
torized computers were commercially available. The use of the transistor defines 
the second generation of computers. It has become widely accepted to classify com-
puters into generations based on the fundamental hardware technology employed 
(Table 1.2). Each new generation is characterized by greater processing perfor-
mance, larger memory capacity, and smaller size than the previous one.

But there are other changes as well. The second generation saw the intro-
duction of more complex arithmetic and logic units and control units, the use of 
 high-  level programming languages, and the provision of system software with the 

Table 1.2 Computer Generations

Generation
Approximate 

Dates Technology
Typical Speed  

(operations per second)

1 1946–1957 Vacuum tube 40,000

2 1957–1964 Transistor 200,000

3 1965–1971  Small-   and  medium-  scale 
integration

1,000,000

4 1972–1977 Large scale integration 10,000,000

5 1978–1991 Very large scale integration 100,000,000

6 1991– Ultra large scale integration >1,000,000,000

6



computer. In broad terms, system software provided the ability to load programs, 
move data to peripherals, and libraries to perform common computations, similar 
to what modern operating systems, such as Windows and Linux, do.

It will be useful to examine an important member of the second generation: the 
IBM 7094 [BELL71]. From the introduction of the 700 series in 1952 to the introduc-
tion of the last member of the 7000 series in 1964, this IBM product line underwent 
an evolution that is typical of computer products. Successive members of the product 
line showed increased performance, increased capacity, and/or lower cost.

The size of main memory, in multiples of 210 36-bit words, grew 
from  2k (1k = 210) to 32k words, while the time to access one word of memory, 
the mem-ory cycle time, fell from 30 ms to 1.4 ms. The number of opcodes grew 
from a modest 24 to 185.

Also, over the lifetime of this series of computers, the relative speed of the 
CPU increased by a factor of 50. Speed improvements are achieved by improved 
electronics (e.g., a transistor implementation is faster than a vacuum tube imple-
mentation) and more complex circuitry. For example, the IBM 7094 includes an 
Instruction Backup Register, used to buffer the next instruction. The control unit 
fetches two adjacent words from memory for an instruction fetch. Except for the 
occurrence of a branching instruction, which is relatively infrequent (perhaps 10 to 
15%), this means that the control unit has to access memory for an instruction on 
only half the instruction cycles. This prefetching significantly reduces the average 
instruction cycle time.

Figure 1.9 shows a large (many peripherals) configuration for an IBM 7094, 
which is representative of  second-  generation computers. Several differences from 
the IAS computer are worth noting. The most important of these is the use of data 
channels. A data channel is an independent I/O module with its own processor and 
instruction set. In a computer system with such devices, the CPU does not execute 
detailed I/O instructions. Such instructions are stored in a main memory to be 
executed by a  special-  purpose processor in the data channel itself. The CPU initi-
ates an I/O transfer by sending a control signal to the data channel, instructing it to 
execute a sequence of instructions in memory. The data channel performs its task 
independently of the CPU and signals the CPU when the operation is complete. 
This arrangement relieves the CPU of a considerable processing burden.

Another new feature is the multiplexor, which is the central termination 
point for data channels, the CPU, and memory. The multiplexor schedules access 
to the memory from the CPU and data channels, allowing these devices to act 
independently.

The Third Generation: Integrated Circuits

A single,  self-  contained transistor is called a discrete component. Throughout  
the 1950s and early 1960s, electronic equipment was composed largely of discrete 
 components—  transistors, resistors, capacitors, and so on. Discrete components were 
manufactured separately, packaged in their own containers, and soldered or wired 

1

7



together onto  Masonite-  like circuit boards, which were then installed in computers, 
oscilloscopes, and other electronic equipment. Whenever an electronic device called 
for a transistor, a little tube of metal containing a  pinhead-  sized piece of silicon had 
to be soldered to a circuit board. The entire manufacturing process, from transistor 
to circuit board, was expensive and cumbersome.

These facts of life were beginning to create problems in the computer indus-
try. Early  second-  generation computers contained about 10,000 transistors. This 
figure grew to the hundreds of thousands, making the manufacture of newer, more 
powerful machines increasingly difficult.

In 1958 came the achievement that revolutionized electronics and started the 
era of microelectronics: the invention of the integrated circuit. It is the integrated 
circuit that defines the third generation of computers. In this section, we provide a 
brief introduction to the technology of integrated circuits. Then we look at perhaps 
the two most important members of the third generation, both of which were intro-
duced at the beginning of that era: the IBM System/360 and the DEC  PDP-  8.

microelectronics Microelectronics means, literally, “small electronics.” Since the 
beginnings of digital electronics and the computer industry, there has been a persistent 
and consistent trend toward the reduction in size of digital electronic circuits. Before 
examining the implications and benefits of this trend, we need to say something about 
the nature of digital electronics. A more detailed discussion is found in Chapter 11.

CPU

Memory

IBM 7094 computer Peripheral devices

Data
channel

Mag tape
units

Card
punch

Line
printer

Card
reader

Drum

Disk

Disk

Hyper-
tapes

Teleprocessing
equipment

Data
channel

Data
channel

Data
channel

Multi-
plexor

Figure 1.9 An IBM 7094 Configuration

8



The basic elements of a digital computer, as we know, must perform data stor-
age, movement, processing, and control functions. Only two fundamental types of 
components are required (Figure 1.10): gates and memory cells. A gate is a device 
that implements a simple Boolean or logical function. For example, an AND gate 
with inputs A and B and output C implements the expression IF A AND B ARE 
TRUE THEN C IS TRUE. Such devices are called gates because they control data 
flow in much the same way that canal gates control the flow of water. The memory 
cell is a device that can store 1 bit of data; that is, the device can be in one of two 
stable states at any time. By interconnecting large numbers of these fundamental 
devices, we can construct a computer. We can relate this to our four basic functions 
as follows:

 ■ Data storage:  Provided by memory cells.
 ■ Data processing:  Provided by gates.
 ■ Data movement:  The paths among components are used to move data from 

memory to memory and from memory through gates to memory.
 ■ Control:  The paths among components can carry control signals. For example, 

a gate will have one or two data inputs plus a control signal input that activates 
the gate. When the control signal is ON, the gate performs its function on the 
data inputs and produces a data output. Conversely, when the control signal 
is OFF, the output line is null, such as the one produced by a high impedance 
state. Similarly, the memory cell will store the bit that is on its input lead when 
the WRITE control signal is ON and will place the bit that is in the cell on its 
output lead when the READ control signal is ON.

Thus, a computer consists of gates, memory cells, and interconnections among 
these elements. The gates and memory cells are, in turn, constructed of simple elec-
tronic components, such as transistors and capacitors.

The integrated circuit exploits the fact that such components as transistors, 
resistors, and conductors can be fabricated from a semiconductor such as silicon. 
It is merely an extension of the  solid-  state art to fabricate an entire circuit in a tiny 
piece of silicon rather than assemble discrete components made from separate 
pieces of silicon into the same circuit. Many transistors can be produced at the same 
time on a single wafer of silicon. Equally important, these transistors can be con-
nected with a process of metallization to form circuits.

Boolean
logic

function
Input

Activate
signal

(a) Gate

Output
•
•
•

Binary
storage

cell
Input

Read

Write

(b) Memory cell

Output

Figure 1.10 Fundamental Computer Elements

9



Figure 1.11 depicts the key concepts in an integrated circuit. A thin wafer of 
silicon is divided into a matrix of small areas, each a few millimeters square. The 
identical circuit pattern is fabricated in each area, and the wafer is broken up into 
chips. Each chip consists of many gates and/or memory cells plus a number of input 
and output attachment points. This chip is then packaged in housing that protects 
it and provides pins for attachment to devices beyond the chip. A number of these 
packages can then be interconnected on a printed circuit board to produce larger 
and more complex circuits.

Initially, only a few gates or memory cells could be reliably manufactured and 
packaged together. These early integrated circuits are referred to as  small-  scale 
integration (SSI). As time went on, it became possible to pack more and more com-
ponents on the same chip. This growth in density is illustrated in Figure 1.12; it is 
one of the most remarkable technological trends ever recorded. This figure reflects 
the famous Moore’s law, which was propounded by Gordon Moore, cofounder of 
Intel, in 1965 [MOOR65]. Moore observed that the number of transistors that could 
be put on a single chip was doubling every year, and correctly predicted that this 
pace would continue into the near future. To the surprise of many, including Moore, 
the pace continued year after year and decade after decade. The pace slowed to a 
doubling every 18 months in the 1970s but has sustained that rate ever since.

The consequences of Moore’s law are profound:

1. The cost of a chip has remained virtually unchanged during this period of rapid
growth in density. This means that the cost of computer logic and memory cir-
cuitry has fallen at a dramatic rate.

Wafer

Chip

Gate

Packaged
chip

Figure 1.11 Relationship among 
Wafer, Chip, and Gate

10



2. Because logic and memory elements are placed closer together on more
densely packed chips, the electrical path length is shortened, increasing oper-
ating speed.

3. The computer becomes smaller, making it more convenient to place in a vari-
ety of environments.

4. There is a reduction in power requirements.

5. The interconnections on the integrated circuit are much more reliable than
solder connections. With more circuitry on each chip, there are fewer inter-
chip connections.

ibm system/360 By 1964, IBM had a firm grip on the computer market with 
its 7000 series of machines. In that year, IBM announced the System/360, a new 
family of computer products. Although the announcement itself was no surprise, it 
contained some unpleasant news for current IBM customers: the 360 product line 
was incompatible with older IBM machines. Thus, the transition to the 360 would 
be difficult for the current customer base, but IBM felt this was necessary to break 
out of some of the constraints of the 7000 architecture and to produce a system 
capable of evolving with the new integrated circuit technology [PADE81, GIFF87]. 
The strategy paid off both financially and technically. The 360 was the success of 
the decade and cemented IBM as the overwhelmingly dominant computer vendor, 
with a market share above 70%. And, with some modifications and extensions, the 
architecture of the 360 remains to this day the architecture of IBM’s mainframe 
computers. Examples using this architecture can be found throughout this text.

The System/360 was the industry’s first planned family of computers. The family 
covered a wide range of performance and cost. The models were compatible in the 

1
1947

Firs
t w

or
kin

g

tra
nsis

to
r

M
oo

re
’s 

law

pro
m

ulga
ted

In
ve

ntio
n of

in
teg

ra
ted

 ci
rc

uit

50 55 60 65 70 75 80 85 90 95 2000 05 11

10
100
1,000
10,000
100,000
10 m
100 m
1 bn
10 bn
100 bn

Figure 1.12 Growth in Transistor Count on Integrated Circuits

11



sense that a program written for one model should be capable of being executed by 
another model in the series, with only a difference in the time it takes to execute.

The concept of a family of compatible computers was both novel and extremely 
successful. A customer with modest requirements and a budget to match could start 
with the relatively inexpensive Model 30. Later, if the customer’s needs grew, it was 
possible to upgrade to a faster machine with more memory without sacrificing the 
investment in  already-  developed software. The characteristics of a family are as follows:

 ■ Similar or identical instruction set: In many cases, the exact same set of 
machine instructions is supported on all members of the family. Thus, a pro-
gram that executes on one machine will also execute on any other. In some 
cases, the lower end of the family has an instruction set that is a subset of 
that of the top end of the family. This means that programs can move up but 
not down.

 ■ Similar or identical operating system: The same basic operating system is 
available for all family members. In some cases, additional features are added 
to the  higher-  end members.

 ■ Increasing speed: The rate of instruction execution increases in going from 
lower to higher family members.

 ■ Increasing number of I/O ports: The number of I/O ports increases in going 
from lower to higher family members.

 ■ Increasing memory size: The size of main memory increases in going from 
lower to higher family members.

 ■ Increasing cost: At a given point in time, the cost of a system increases in going 
from lower to higher family members.

How could such a family concept be implemented? Differences were achieved 
based on three factors: basic speed, size, and degree of simultaneity [STEV64]. For 
example, greater speed in the execution of a given instruction could be gained by 
the use of more complex circuitry in the ALU, allowing suboperations to be car-
ried out in parallel. Another way of increasing speed was to increase the width of 
the data path between main memory and the CPU. On the Model 30, only 1 byte 
(8 bits) could be fetched from main memory at a time, whereas 8 bytes could be 
fetched at a time on the Model 75.

The System/360 not only dictated the future course of IBM but also had a pro-
found impact on the entire industry. Many of its features have become standard on 
other large computers.

dec  pdp-  8 In the same year that IBM shipped its first System/360, another 
momentous first shipment occurred:  PDP-  8 from Digital Equipment Corporation 
(DEC). At a time when the average computer required an  air-  conditioned room, 
the  PDP-  8 (dubbed a minicomputer by the industry, after the miniskirt of the day) 
was small enough that it could be placed on top of a lab bench or be built into 
other equipment. It could not do everything the mainframe could, but at $16,000, it 
was cheap enough for each lab technician to have one. In contrast, the System/360 
series of mainframe computers introduced just a few months before cost hundreds 
of thousands of dollars.

12



The low cost and small size of the  PDP-  8 enabled another manufacturer to 
purchase a  PDP-  8 and integrate it into a total system for resale. These other manu-
facturers came to be known as original equipment manufacturers (OEMs), and the 
OEM market became and remains a major segment of the computer marketplace.

In contrast to the  central-  switched architecture (Figure 1.9) used by IBM on its 
700/7000 and 360 systems, later models of the  PDP-  8 used a structure that became vir-
tually universal for microcomputers: the bus structure. This is illustrated in Figure 1.13. 
The  PDP-  8 bus, called the Omnibus, consists of 96 separate signal paths, used to carry 
control, address, and data signals. Because all system components share a common 
set of signal paths, their use can be controlled by the CPU. This architecture is highly 
flexible, allowing modules to be plugged into the bus to create various configurations. 
It is only in recent years that the bus structure has given way to a structure known as 
 point-  to-  point interconnect, described in Chapter 3.

Later Generations

Beyond the third generation there is less general agreement on defining generations 
of computers. Table 1.2 suggests that there have been a number of later generations, 
based on advances in integrated circuit technology. With the introduction of  large- 
 scale integration (LSI), more than 1,000 components can be placed on a single inte-
grated circuit chip.  Very-  large-  scale integration (VLSI) achieved more than 10,000 
components per chip, while current  ultra-  large-  scale integration (ULSI) chips can 
contain more than one billion components.

With the rapid pace of technology, the high rate of introduction of new prod-
ucts, and the importance of software and communications as well as hardware, the 
classification by generation becomes less clear and less meaningful. In this section, 
we mention two of the most important of developments in later generations.

semiconductor memory The first application of integrated circuit technology 
to computers was the construction of the processor (the control unit and the 
arithmetic and logic unit) out of integrated circuit chips. But it was also found that 
this same technology could be used to construct memories.

In the 1950s and 1960s, most computer memory was constructed from tiny 
rings of ferromagnetic material, each about a sixteenth of an inch in diameter. 
These rings were strung up on grids of fine wires suspended on small screens inside 
the computer. Magnetized one way, a ring (called a core) represented a one; mag-
netized the other way, it stood for a zero.  Magnetic-  core memory was rather fast; 
it took as little as a millionth of a second to read a bit stored in memory. But it was 

Console
controller

CPU

Omnibus

Main
memory

I/O
module

I/O
module

• • •

Figure 1.13  PDP-  8 Bus Structure
13



expensive and bulky, and used destructive readout: The simple act of reading a core 
erased the data stored in it. It was therefore necessary to install circuits to restore 
the data as soon as it had been extracted.

Then, in 1970, Fairchild produced the first relatively capacious semiconductor 
memory. This chip, about the size of a single core, could hold 256 bits of memory. It 
was nondestructive and much faster than core. It took only 70 billionths of a second 
to read a bit. However, the cost per bit was higher than for that of core.

In 1974, a seminal event occurred: The price per bit of semiconductor memory 
dropped below the price per bit of core memory. Following this, there has been a con-
tinuing and rapid decline in memory cost accompanied by a corresponding increase in 
physical memory density. This has led the way to smaller, faster machines with mem-
ory sizes of larger and more expensive machines from just a few years earlier. Devel-
opments in memory technology, together with developments in processor technology 
to be discussed next, changed the nature of computers in less than a decade. Although 
bulky, expensive computers remain a part of the landscape, the computer has also 
been brought out to the “end user,” with office machines and personal computers.

Since 1970, semiconductor memory has been through 13 generations: 1k, 4k, 
16k, 64k, 256k, 1M, 4M, 16M, 64M, 256M, 1G, 4G, and, as of this writing, 8 Gb 
on a single chip (1 k = 210, 1 M = 220, 1 G = 230). Each generation has provided 
increased storage density, accompanied by declining cost per bit and declining 
access time. Densities are projected to reach 16 Gb by 2018 and 32 Gb by 2023 
[ITRS14].

microprocessors Just as the density of elements on memory chips has continued 
to rise, so has the density of elements on processor chips. As time went on, more 
and more elements were placed on each chip, so that fewer and fewer chips were 
needed to construct a single computer processor.

A breakthrough was achieved in 1971, when Intel developed its 4004. The 
4004 was the first chip to contain all of the components of a CPU on a single chip: 
The microprocessor was born.

The 4004 can add two 4-bit numbers and can multiply only by repeated addi-
tion. By today’s standards, the 4004 is hopelessly primitive, but it marked the begin-
ning of a continuing evolution of microprocessor capability and power.

This evolution can be seen most easily in the number of bits that the processor 
deals with at a time. There is no  clear-  cut measure of this, but perhaps the best meas-
ure is the data bus width: the number of bits of data that can be brought into or sent 
out of the processor at a time. Another measure is the number of bits in the accumu-
lator or in the set of  general-  purpose registers. Often, these measures coincide, but 
not always. For example, a number of microprocessors were developed that operate 
on 16-bit numbers in registers but can only read and write 8 bits at a time.

The next major step in the evolution of the microprocessor was the introduc-
tion in 1972 of the Intel 8008. This was the first 8-bit microprocessor and was almost 
twice as complex as the 4004.

Neither of these steps was to have the impact of the next major event: the 
introduction in 1974 of the Intel 8080. This was the first  general-  purpose micropro-
cessor. Whereas the 4004 and the 8008 had been designed for specific applications, 
the 8080 was designed to be the CPU of a  general-  purpose microcomputer. Like the 

14



8008, the 8080 is an 8-bit microprocessor. The 8080, however, is faster, has a richer 
instruction set, and has a large addressing capability.

About the same time, 16-bit microprocessors began to be developed. How-
ever, it was not until the end of the 1970s that powerful,  general-  purpose 16-bit 
microprocessors appeared. One of these was the 8086. The next step in this trend 
occurred in 1981, when both Bell Labs and  Hewlett-  Packard developed 32-bit, 
 single-  chip microprocessors. Intel introduced its own 32-bit microprocessor, 
the 80386, in 1985 (Table 1.3, Lecture No.3).

15




