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2–5 Complements of Binary Numbers

The 1’s complement and the 2’s complement of a binary number are important because 

they permit the representation of negative numbers. The method of 2’s complement arith-

metic is commonly used in computers to handle negative numbers.

After completing this section, you should be able to

u Convert a binary number to its 1’s complement

u Convert a binary number to its 2’s complement using either of two methods

Finding the 1’s Complement

The 1’s complement of a binary number is found by changing all 1s to 0s and all 0s to 1s, 

as illustrated below:

1 0 1 1 0 0 1 0   Binary number

T T T T T T T T

0 1 0 0 1 1 0 1   1>s complement

The simplest way to obtain the 1’s complement of a binary number with a digital circuit 

is to use parallel inverters (NOT circuits), as shown in Figure 2–2 for an 8-bit binary number.

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

FIGURE 2–2 Example of inverters used to obtain the 1’s complement of a binary number.
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An alternative method of finding the 2’s complement of a binary number is as follows:

1. Start at the right with the LSB and write the bits as they are up to and including the

first 1.

2. Take the 1’s complements of the remaining bits.

Finding the 2’s Complement

The 2’s complement of a binary number is found by adding 1 to the LSB of the 1’s complement.

2>s complement = (1>s complement) + 1

The 2’s complement of a negative binary number can be realized using inverters and an 

adder, as indicated in Figure 2–3. This illustrates how an 8-bit number can be converted to 

its 2’s complement by first inverting each bit (taking the 1’s complement) and then adding 

1 to the 1’s complement with an adder circuit.

0 1 0 1 0 1 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

Adder

Negative number

1’s complement

Input bits

Output bits (sum)

2’s complement

Carry

in

1

(add 1)

FIGURE 2–3 Example of obtaining the 2’s complement of a negative binary number.

EXAMPLE 2–12

Find the 2’s complement of 10110010.

Solution

10110010

01001101

+  1

01001110

Binary number

1>s complement

Add 1

2>s complement

Related Problem

Determine the 2’s complement of 11001011.

EXAMPLE 2–13

Find the 2’s complement of 10111000 using the alternative method.

Solution

10111000  Binary number

01001000  2>s complement

Related Problem

Find the 2’s complement of 11000000.

e e

These bits stay the same.c
1’s complements 

of original bits c
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To convert from a 1’s or 2’s complement back to the true (uncomplemented) binary form, 

use the same two procedures described previously. To go from the 1’s complement back to 

true binary, reverse all the bits. To go from the 2’s complement form back to true binary, 

take the 1’s complement of the 2’s complement number and add 1 to the least significant bit.

SECTION 2–5 CHECKUP

1. Determine the 1’s complement of each binary number:

(a) 00011010  (b) 11110111 (c) 10001101

2. Determine the 2’s complement of each binary number:

 (a) 00010110 (b) 11111100 (c) 10010001

2–6 Signed Numbers

Digital systems, such as the computer, must be able to handle both positive and negative 

numbers. A signed binary number consists of both sign and magnitude information. The 

sign indicates whether a number is positive or negative, and the magnitude is the value of 

the number. There are three forms in which signed integer (whole) numbers can be repre-

sented in binary: sign-magnitude, 1’s complement, and 2’s complement. Of these, the 2’s 

complement is the most important and the sign-magnitude is the least used. Noninteger and 

very large or small numbers can be expressed in floating-point format.

After completing this section, you should be able to

u Express positive and negative numbers in sign-magnitude

u Express positive and negative numbers in 1’s complement

u Express positive and negative numbers in 2’s complement

u Determine the decimal value of signed binary numbers

u Express a binary number in floating-point format

The Sign Bit

The left-most bit in a signed binary number is the sign bit, which tells you whether the 

number is positive or negative.

A 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative number.

Sign-Magnitude Form

When a signed binary number is represented in sign-magnitude, the left-most bit is the sign 

bit and the remaining bits are the magnitude bits. The magnitude bits are in true (uncomple-

mented) binary for both positive and negative numbers. For example, the decimal number 

+25 is expressed as an 8-bit signed binary number using the sign-magnitude form as

00011001

Sign bit Magnitude bits

The decimal number 225 is expressed as

10011001

Notice that the only difference between +25 and 225 is the sign bit because the magnitude 

bits are in true binary for both positive and negative numbers.

In the sign-magnitude form, a negative number has the same magnitude bits as the 

corresponding positive number but the sign bit is a 1 rather than a zero.

u

c c
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The Decimal Value of Signed Numbers

Sign-Magnitude

Decimal values of positive and negative numbers in the sign-magnitude form are determined 

by summing the weights in all the magnitude bit positions where there are 1s and ignoring 

those positions where there are zeros. The sign is determined by examination of the sign bit.

1’s Complement Form

Positive numbers in 1’s complement form are represented the same way as the positive 

sign-magnitude numbers. Negative numbers, however, are the 1’s complements of the cor-

responding positive numbers. For example, using eight bits, the decimal number 225 is 

expressed as the 1’s complement of +25 (00011001) as

11100110

In the 1’s complement form, a negative number is the 1’s complement of the cor-

responding positive number.

2’s Complement Form

Positive numbers in 2’s complement form are represented the same way as in the sign-

magnitude and 1’s complement forms. Negative numbers are the 2’s complements of the 

corresponding positive numbers. Again, using eight bits, let’s take decimal number 225 and 

express it as the 2’s complement of +25 (00011001). Inverting each bit and adding 1, you get

-25 = 11100111

In the 2’s complement form, a negative number is the 2’s complement of the cor-

responding positive number.

EXAMPLE 2–14

Express the decimal number 239 as an 8-bit number in the sign-magnitude, 1’s com-

plement, and 2’s complement forms.

Solution

First, write the 8-bit number for +39.

00100111

In the sign-magnitude form, 239 is produced by changing the sign bit to a 1 and 

leaving the magnitude bits as they are. The number is

10100111

In the 1’s complement form, 239 is produced by taking the 1’s complement of +39 

(00100111).

11011000

In the 2’s complement form, 239 is produced by taking the 2’s complement of +39 

(00100111) as follows:

11011000 1>s complement
+   1 

 11011001 2>s complement

Related Problem

Express +19 and 219 as 8-bit numbers in sign-magnitude, 1’s complement, and 2’s 

complement.
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EXAMPLE 2–15

Determine the decimal value of this signed binary number expressed in sign-magnitude: 

10010101.

Solution

The seven magnitude bits and their powers-of-two weights are as follows:

26 25 24 23 22 21 20

0 0 1 0 1 0 1

Summing the weights where there are 1s,

16 + 4 + 1 = 21

The sign bit is 1; therefore, the decimal number is 221.

Related Problem

Determine the decimal value of the sign-magnitude number 01110111.

1’s Complement

Decimal values of positive numbers in the 1’s complement form are determined by sum-

ming the weights in all bit positions where there are 1s and ignoring those positions where 

there are zeros. Decimal values of negative numbers are determined by assigning a nega-

tive value to the weight of the sign bit, summing all the weights where there are 1s, and 

adding 1 to the result.

EXAMPLE 2–16

Determine the decimal values of the signed binary numbers expressed in 1’s complement:

(a) 00010111 (b) 11101000

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 20

0 0 0 1 0 1 1 1

Summing the weights where there are 1s,

16 + 4 + 2 + 1 = �23

(b) The bits and their powers-of-two weights for the negative number are as follows. 

Notice that the negative sign bit has a weight of 227 or 2128.

-27 26 25 24 23 22 21 20

1 1 1 0 1 0 0 0

Summing the weights where there are 1s,

-128 + 64 + 32 + 8 = -24

Adding 1 to the result, the final decimal number is

-24 + 1 = �23

Related Problem

Determine the decimal value of the 1’s complement number 11101011.
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From these examples, you can see why the 2’s complement form is preferred for rep-

resenting signed integer numbers: To convert to decimal, it simply requires a summation 

of weights regardless of whether the number is positive or negative. The 1’s complement 

system requires adding 1 to the summation of weights for negative numbers but not for 

positive numbers. Also, the 1’s complement form is generally not used because two repre-

sentations of zero (00000000 or 11111111) are possible.

Range of Signed Integer Numbers

We have used 8-bit numbers for illustration because the 8-bit grouping is common in most 

computers and has been given the special name byte. With one byte or eight bits, you can 

represent 256 different numbers. With two bytes or sixteen bits, you can represent 65,536 

different numbers. With four bytes or 32 bits, you can represent 4.295 * 109 different 

numbers. The formula for finding the number of different combinations of n bits is

Total combinations = 2n

For 2’s complement signed numbers, the range of values for n-bit numbers is

Range = -(2n-1) to +(2n-1 - 1)

where in each case there is one sign bit and n 2 1 magnitude bits. For example, with four bits 

you can represent numbers in 2’s complement ranging from 2(23) = 28 to 23 2 1 = +7. 

Similarly, with eight bits you can go from 2128 to +127, with sixteen bits you can go from 

2’s Complement

Decimal values of positive and negative numbers in the 2’s complement form are deter-

mined by summing the weights in all bit positions where there are 1s and ignoring those 

positions where there are zeros. The weight of the sign bit in a negative number is given a 

negative value.

EXAMPLE 2–17

Determine the decimal values of the signed binary numbers expressed in 2’s complement:

(a) 01010110 (b) 10101010

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 20

0 1 0 1 0 1 1 0

Summing the weights where there are 1s,

64 + 16 + 4 + 2 = �86

(b) The bits and their powers-of-two weights for the negative number are as follows. 

Notice that the negative sign bit has a weight of 227
= 2128.

-27 26 25 24 23 22 21 20

1 0 1 0 1 0 1 0

Summing the weights where there are 1s,

-128 + 32 + 8 + 2 = �86

Related Problem

Determine the decimal value of the 2’s complement number 11010111.
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232,768 to +32,767, and so on. There is one less positive number than there are negative 

numbers because zero is represented as a positive number (all zeros).

Floating-Point Numbers

To represent very large integer (whole) numbers, many bits are required. There is also a 

problem when numbers with both integer and fractional parts, such as 23.5618, need to be 

represented. The floating-point number system, based on scientific notation, is capable of 

representing very large and very small numbers without an increase in the number of bits 

and also for representing numbers that have both integer and fractional components.

A floating-point number (also known as a real number) consists of two parts plus a 

sign. The mantissa is the part of a floating-point number that represents the magnitude of 

the number and is between 0 and 1. The exponent is the part of a floating-point number 

that represents the number of places that the decimal point (or binary point) is to be moved.

A decimal example will be helpful in understanding the basic concept of floating-point 

numbers. Let’s consider a decimal number which, in integer form, is 241,506,800. The 

mantissa is .2415068 and the exponent is 9. When the integer is expressed as a floating-

point number, it is normalized by moving the decimal point to the left of all the digits so 

that the mantissa is a fractional number and the exponent is the power of ten. The floating-

point number is written as

0.2415068 * 109

For binary floating-point numbers, the format is defined by ANSI/IEEE Standard 754-1985 

in three forms: single-precision, double-precision, and extended-precision. These all have the 

same basic formats except for the number of bits. Single-precision floating-point numbers 

have 32 bits, double-precision numbers have 64 bits, and extended-precision numbers have 80 

bits. We will restrict our discussion to the single-precision floating-point format.

Single-Precision Floating-Point Binary Numbers

In the standard format for a single-precision binary number, the sign bit (S) is the left-most 

bit, the exponent (E) includes the next eight bits, and the mantissa or fractional part (F) 

includes the remaining 23 bits, as shown next.

32 bits 

S Exponent (E) Mantissa (fraction, F)

1 bit 8 bits 23 bits

In the mantissa or fractional part, the binary point is understood to be to the left of  

the 23 bits. Effectively, there are 24 bits in the mantissa because in any binary number the 

left-most (most significant) bit is always a 1. Therefore, this 1 is understood to be there 

although it does not occupy an actual bit position.

The eight bits in the exponent represent a biased exponent, which is obtained by add-

ing 127 to the actual exponent. The purpose of the bias is to allow very large or very 

small numbers without requiring a separate sign bit for the exponents. The biased exponent 

allows a range of actual exponent values from 2126 to +128.

To illustrate how a binary number is expressed in floating-point format, let’s use 

1011010010001 as an example. First, it can be expressed as 1 plus a fractional binary num-

ber by moving the binary point 12 places to the left and then multiplying by the appropriate 

power of two.

1011010010001 = 1.011010010001 * 212

Assuming that this is a positive number, the sign bit (S) is 0. The exponent, 12, is expressed 

as a biased exponent by adding it to 127 (12 + 127 = 139). The biased exponent (E) is 

expressed as the binary number 10001011. The mantissa is the fractional part (F) of the 

binary number, .011010010001. Because there is always a 1 to the left of the binary point 
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in the power-of-two expression, it is not included in the mantissa. The complete floating-

point number is

S E F

0 10001011 01101001000100000000000

Next, let’s see how to evaluate a binary number that is already in floating-point format. 

The general approach to determining the value of a floating-point number is expressed by 

the following formula:

Number = (-1)S(1 + F)(2E-127)

To illustrate, let’s consider the following floating-point binary number:

S E F

1 10010001 10001110001000000000000

The sign bit is 1. The biased exponent is 10010001 = 145. Applying the formula, we get

 Number = (-1)1 (1.10001110001)(2145-127)

= (-1)(1.10001110001)(218) = -1100011100010000000

This floating-point binary number is equivalent to 2407,688 in decimal. Since the expo-

nent can be any number between 2126 and +128, extremely large and small numbers can 

be expressed. A 32-bit floating-point number can replace a binary integer number having 

129 bits. Because the exponent determines the position of the binary point, numbers con-

taining both integer and fractional parts can be represented.

There are two exceptions to the format for floating-point numbers: The number 0.0 is repre-

sented by all 0s, and infinity is represented by all 1s in the exponent and all 0s in the mantissa.

EXAMPLE 2–18

Convert the decimal number 3.248 * 104 to a single-precision floating-point binary number.

Solution

Convert the decimal number to binary.

3.248 * 104
= 32480 = 1111110111000002 = 1.11111011100000 * 214

The MSB will not occupy a bit position because it is always a 1. Therefore, the man-

tissa is the fractional 23-bit binary number 11111011100000000000000 and the biased 

exponent is

14 + 127 = 141 = 100011012

The complete floating-point number is

0 10001101 11111011100000000000000

Related Problem

Determine the binary value of the following floating-point binary number:

0 10011000 10000100010100110000000

SECTION 2–6 CHECKUP

1. Express the decimal number +9 as an 8-bit binary number in the sign-magnitude system.

2. Express the decimal number 233 as an 8-bit binary number in the 1’s complement

system.

3. Express the decimal number 246 as an 8-bit binary number in the 2’s complement

system.

4. List the three parts of a signed, floating-point number.



9

2–7 Arithmetic Operations with Signed Numbers

In the last section, you learned how signed numbers are represented in three different forms. In 

this section, you will learn how signed numbers are added, subtracted, multiplied, and divided. 

Because the 2’s complement form for representing signed numbers is the most widely used 

in computers and microprocessor-based systems, the coverage in this section is limited to 2’s 

complement arithmetic. The processes covered can be extended to the other forms if necessary.

After completing this section, you should be able to

u Add signed binary numbers

u Define overflow

u Explain how computers add strings of numbers

u Subtract signed binary numbers

u Multiply signed binary numbers using the direct addition method

u Multiply signed binary numbers using the partial products method

u Divide signed binary numbers

Addition

The two numbers in an addition are the addend and the augend. The result is the sum. 

There are four cases that can occur when two signed binary numbers are added.

1. Both numbers positive

2. Positive number with magnitude larger than negative number

3. Negative number with magnitude larger than positive number

4. Both numbers negative

Let’s take one case at a time using 8-bit signed numbers as examples. The equivalent decimal 

numbers are shown for reference.

Both numbers positive: 00000111

+ 00000100

00001011

 

7

+ 4

11

The sum is positive and is therefore in true (uncomplemented) binary.

Positive number with magnitude larger than negative number:

00001111

+ 11111010

1    00001001

  

15

+ -6

9

The final carry bit is discarded. The sum is positive and therefore in true (uncomplemented) 

binary.

Negative number with magnitude larger than positive number:

00010000

+ 11101000

11111000

 

16

+ -24

-8

The sum is negative and therefore in 2’s complement form.

Both numbers negative: 11111011

+ 11110111

1    11110010

  

-5

+ -9

-14

The final carry bit is discarded. The sum is negative and therefore in 2’s complement form.

Discard carry 

Discard carry 



10

Subtraction

Subtraction is a special case of addition. For example, subtracting +6 (the subtrahend) 

from +9 (the minuend) is equivalent to adding 26 to +9. Basically, the subtraction opera-

tion changes the sign of the subtrahend and adds it to the minuend. The result of a subtrac-

tion is called the difference.

The sign of a positive or negative binary number is changed by taking its 2’s 

complement.

In a computer, the negative numbers are stored in 2’s complement form so, as you can 

see, the addition process is very simple: Add the two numbers and discard any final carry bit.

Overflow Condition

When two numbers are added and the number of bits required to represent the sum exceeds 

the number of bits in the two numbers, an overflow results as indicated by an incorrect sign 

bit. An overflow can occur only when both numbers are positive or both numbers are nega-

tive. If the sign bit of the result is different than the sign bit of the numbers that are added, 

overflow is indicated. The following 8-bit example will illustrate this condition.

01111101 125

 +  00111010 + 58

10110111 183

Sign incorrect 

Magnitude incorrect 

In this example the sum of 183 requires eight magnitude bits. Since there are seven mag-

nitude bits in the numbers (one bit is the sign), there is a carry into the sign bit which pro-

duces the overflow indication.

Numbers Added Two at a Time

Now let’s look at the addition of a string of numbers, added two at a time. This can be accom-

plished by adding the first two numbers, then adding the third number to the sum of the first 

two, then adding the fourth number to this result, and so on. This is how computers add strings 

of numbers. The addition of numbers taken two at a time is illustrated in Example 2–19.

•
EXAMPLE 2–19

Add the signed numbers: 01000100, 00011011, 00001110, and 00010010.

Solution

The equivalent decimal additions are given for reference.

68 01000100

+ 27 + 00011011

95 01011111

+ 14 + 00001110

109 01101101

+ 18 + 00010010

127 01111111

 

Add 1st two numbers

1st sum

Add 3rd number

2nd sum

Add 4th number

Final sum

Related Problem

Add 00110011, 10111111, and 01100011. These are signed numbers.
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For example, when you take the 2’s complement of the positive number 00000100 

(+ 4), you get 11111100, which is 24 as the following sum-of-weights evaluation 

shows:

-128 + 64 + 32 + 16 + 8 + 4 = -4

As another example, when you take the 2’s complement of the negative number 11101101 

(219), you get 00010011, which is +19 as the following sum-of-weights evaluation 

shows:

16 + 2 + 1 = 19

Since subtraction is simply an addition with the sign of the subtrahend changed, the 

process is stated as follows:

To subtract two signed numbers, take the 2’s complement of the subtrahend and 

add. Discard any final carry bit.

Example 2–20 illustrates the subtraction process.

EXAMPLE 2–20

Perform each of the following subtractions of the signed numbers:

(a) 00001000 2 00000011 (b) 00001100 2 11110111

(c) 11100111 2 00010011 (d) 10001000 2 11100010

Solution

Like in other examples, the equivalent decimal subtractions are given for reference.

(a) In this case, 8 2 3 = 8 +  (23) = 5.

00001000

+ 11111101

1 00000101

 

Minuend (+8)

2>s complement of subtrahend (-3)

Difference (+5)

(b) In this case, 12 2 (29) = 12 +  9 = 21.

00001100

+ 00001001

00010101

 

Minuend (+12)

2>s complement of subtrahend (+9)

Difference (+21)

(c) In this case, 225 2 (+19) = 225 +  (219) = 244.

11100111

+ 11101101

1 11010100

 

Minuend (-25)

2>s complement of subtrahend (-19)

Difference (-44)

(d) In this case, 2120 2 (230) = 2120 +  30 = 290.

10001000

+ 00011110

10100110

 

Minuend (-120)

2>s complement of subtrahend (+30)

Difference (-90)

Related Problem

Subtract 01000111 from 01011000.

Discard carry 

Discard carry 
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Multiplication

The numbers in a multiplication are the multiplicand, the multiplier, and the product. 

These are illustrated in the following decimal multiplication:

8

* 3

24

Multiplicand

Multiplier

Product

The multiplication operation in most computers is accomplished using addition. As you have 

already seen, subtraction is done with an adder; now let’s see how multiplication is done.

Direct addition and partial products are two basic methods for performing multiplica-

tion using addition. In the direct addition method, you add the multiplicand a number of 

times equal to the multiplier. In the previous decimal example (8 * 3), three multiplicands 

are added: 8 +  8 +  8 = 24. The disadvantage of this approach is that it becomes very 

lengthy if the multiplier is a large number. For example, to multiply 350 * 75, you must 

add 350 to itself 75 times. Incidentally, this is why the term times is used to mean multiply.

When two binary numbers are multiplied, both numbers must be in true (uncomple-

mented) form. The direct addition method is illustrated in Example 2–21 adding two binary 

numbers at a time.

EXAMPLE 2–21

Multiply the signed binary numbers: 01001101 (multiplicand) and 00000100 (multiplier) 

using the direct addition method.

Solution

Since both numbers are positive, they are in true form, and the product will be positive. The 

decimal value of the multiplier is 4, so the multiplicand is added to itself four times as follows:

01001101  1st time

+  01001101  2nd time

10011010  Partial sum

+  01001101  3rd time

11100111  Partial sum

+  01001101  4th time

100110100 Product

Since the sign bit of the multiplicand is 0, it has no effect on the outcome. All of the 

bits in the product are magnitude bits.

Related Problem

Multiply 01100001 by 00000110 using the direct addition method.

The partial products method is perhaps the more common one because it reflects 

the way you multiply longhand. The multiplicand is multiplied by each multiplier digit 

beginning with the least significant digit. The result of the multiplication of the multi-

plicand by a multiplier digit is called a partial product. Each successive partial product 

is moved (shifted) one place to the left and when all the partial products have been pro-

duced, they are added to get the final product. Here is a decimal example.

239

* 123

717

478 

+  239 

29,397

Multiplicand

Multiplier

1st partial product (3 * 239)

2nd partial product (2 * 239)

3rd partial product (1 * 239)

Final product
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The sign of the product of a multiplication depends on the signs of the multiplicand and 

the multiplier according to the following two rules:

• If the signs are the same, the product is positive.

• If the signs are different, the product is negative.

The basic steps in the partial products method of binary multiplication are as  follows:

Step 1: Determine if the signs of the multiplicand and multiplier are the same or differ-

ent. This determines what the sign of the product will be.

Step 2: Change any negative number to true (uncomplemented) form. Because most 

computers store negative numbers in 2’s complement, a 2’s complement oper-

ation is required to get the negative number into true form.

Step 3: Starting with the least significant multiplier bit, generate the partial products. 

When the multiplier bit is 1, the partial product is the same as the multiplicand. 

When the multiplier bit is 0, the partial product is zero. Shift each successive 

partial product one bit to the left.

Step 4: Add each successive partial product to the sum of the previous partial products 

to get the final product.

Step 5: If the sign bit that was determined in step 1 is negative, take the 2’s comple-

ment of the product. If positive, leave the product in true form. Attach the sign 

bit to the product.

EXAMPLE 2–22

Multiply the signed binary numbers: 01010011 (multiplicand) and 11000101 (multiplier).

Solution

Step 1: The sign bit of the multiplicand is 0 and the sign bit of the multiplier is 1. The 

sign bit of the product will be 1 (negative).

Step 2: Take the 2’s complement of the multiplier to put it in true form.

11000101 h 00111011

Step 3 and 4: The multiplication proceeds as follows. Notice that only the magnitude 

bits are used in these steps.

1010011

* 0111011

1010011

+  1010011 

11111001

+  0000000 

011111001

+  1010011 

1110010001

+  1010011  

100011000001

+  1010011  

1001100100001

+  0000000   

1001100100001

Multiplicand

Multiplier

1st partial product

2nd partial product

Sum of 1st and 2nd

3rd partial product

Sum

4th partial product

Sum

5th partial product

Sum

6th partial product

Sum

7th partial product

Final product
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Division

The numbers in a division are the dividend, the divisor, and the quotient. These are illus-

trated in the following standard division format.

dividend

divisor
= quotient

The division operation in computers is accomplished using subtraction. Since subtraction 

is done with an adder, division can also be accomplished with an adder.

The result of a division is called the quotient; the quotient is the number of times that 

the divisor will go into the dividend. This means that the divisor can be subtracted from the 

dividend a number of times equal to the quotient, as illustrated by dividing 21 by 7.

21

-   7

14

-   7

7

-   7

0

 

Dividend

1st subtraction of divisor

1st partial remainder

2nd subtraction of divisor

2nd partial remainder

3rd subtraction of divisor

Zero remainder

In this simple example, the divisor was subtracted from the dividend three times before a 

remainder of zero was obtained. Therefore, the quotient is 3.

The sign of the quotient depends on the signs of the dividend and the divisor according 

to the following two rules:

• If the signs are the same, the quotient is positive.

• If the signs are different, the quotient is negative.

When two binary numbers are divided, both numbers must be in true (uncomplemented)

form. The basic steps in a division process are as follows:

Step 1: Determine if the signs of the dividend and divisor are the same or different. This 

determines what the sign of the quotient will be. Initialize the quotient to zero.

Step 2: Subtract the divisor from the dividend using 2’s complement addition to get 

the first partial remainder and add 1 to the quotient. If this partial remainder is 

positive, go to step 3. If the partial remainder is zero or negative, the division 

is complete.

Step 3: Subtract the divisor from the partial remainder and add 1 to the quotient. If the 

result is positive, repeat for the next partial remainder. If the result is zero or 

negative, the division is complete.

Continue to subtract the divisor from the dividend and the partial remainders until there is 

a zero or a negative result. Count the number of times that the divisor is subtracted and you 

have the quotient. Example 2–23 illustrates these steps using 8-bit signed binary numbers.

Step 5: Since the sign of the product is a 1 as determined in step 1, take the 2’s com-

plement of the product.

1001100100001 h 0110011011111

Attach the sign bit 

1  0110011011111

Related Problem

Verify the multiplication is correct by converting to decimal numbers and performing 

the multiplication.
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EXAMPLE 2–23

Divide 01100100 by 00011001.

Solution

Step 1: The signs of both numbers are positive, so the quotient will be positive. The 

quotient is initially zero: 00000000.

Step 2: Subtract the divisor from the dividend using 2’s complement addition 

(remember that final carries are discarded).

01100100

+  11100111

01001011

 

Dividend

2>s complement of divisor

Positive 1st partial remainder

Add 1 to quotient: 00000000 + 00000001 = 00000001.

Step 3: Subtract the divisor from the 1st partial remainder using 2’s complement 

addition.

01001011

+  11100111

00110010

 

1st partial remainder

2>s complement of divisor

Positive 2nd partial remainder

Add 1 to quotient: 00000001 + 00000001 = 00000010.

Step 4: Subtract the divisor from the 2nd partial remainder using 2’s complement 

addition.

00110010

+  11100111

00011001

 

2nd partial remainder

2>s complement of divisor

Positive 3rd partial remainder

Add 1 to quotient: 00000010 + 00000001 = 00000011.

Step 5: Subtract the divisor from the 3rd partial remainder using 2’s complement 

addition.

00011001

+  11100111

00000000

 

3rd partial remainder

2>s complement of divisor

Zero remainder

Add 1 to quotient: 00000011 + 00000001 = 00000100 (final quotient). The 

process is complete.

Related Problem

Verify that the process is correct by converting to decimal numbers and performing the 

division.

SECTION 2–7 CHECKUP

1. List the four cases when numbers are added.

2. Add the signed numbers 00100001 and 10111100.

3. Subtract the signed numbers 00110010 from 01110111.

4. What is the sign of the product when two negative numbers are multiplied?

5. Multiply 01111111 by 00000101.

6. What is the sign of the quotient when a positive number is divided by a negative number?

7. Divide 00110000 by 00001100.
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2–8 Hexadecimal Numbers

The hexadecimal number system has sixteen characters; it is used primarily as a compact 

way of displaying or writing binary numbers because it is very easy to convert between 

binary and hexadecimal. As you are probably aware, long binary numbers are difficult to 

read and write because it is easy to drop or transpose a bit. Since computers and micropro-

cessors understand only 1s and 0s, it is necessary to use these digits when you program in 

“machine language.” Imagine writing a sixteen bit instruction for a microprocessor system 

in 1s and 0s. It is much more efficient to use hexadecimal or octal; octal numbers are covered 

in Section 2–9. Hexadecimal is widely used in computer and microprocessor applications.

After completing this section, you should be able to

u List the hexadecimal characters

u Count in hexadecimal

u Convert from binary to hexadecimal

u Convert from hexadecimal to binary

u Convert from hexadecimal to decimal

u Convert from decimal to hexadecimal

u Add hexadecimal numbers

u Determine the 2’s complement of a hexadecimal number

u Subtract hexadecimal numbers

The hexadecimal number system has a base of sixteen; that is, it is composed of 16 

numeric and alphabetic characters. Most digital systems process binary data in groups 

that are multiples of four bits, making the hexadecimal number very convenient because 

each hexadecimal digit represents a 4-bit binary number (as listed in Table 2–3).

TABLE 2–3

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Ten numeric digits and six alphabetic characters make up the hexadecimal number sys-

tem. The use of letters A, B, C, D, E, and F to represent numbers may seem strange at 

first, but keep in mind that any number system is only a set of sequential symbols. If 

you  understand what quantities these symbols represent, then the form of the symbols 
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 themselves is less important once you get accustomed to using them. We will use the sub-

script 16 to designate hexadecimal numbers to avoid confusion with decimal numbers. 

Sometimes you may see an “h” following a hexadecimal number.

Counting in Hexadecimal

How do you count in hexadecimal once you get to F? Simply start over with another col-

umn and continue as follows:

c, E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31, c

With two hexadecimal digits, you can count up to FF16, which is decimal 255. To count 

beyond this, three hexadecimal digits are needed. For instance, 10016 is decimal 256, 10116 

is decimal 257, and so forth. The maximum 3-digit hexadecimal number is FFF16, or deci-

mal 4095. The maximum 4-digit hexadecimal number is FFFF16, which is decimal 65,535.

Binary-to-Hexadecimal Conversion

Converting a binary number to hexadecimal is a straightforward procedure. Simply break 

the binary number into 4-bit groups, starting at the right-most bit and replace each 4-bit 

group with the equivalent hexadecimal symbol.

EXAMPLE 2–24

Convert the following binary numbers to hexadecimal:

(a) 1100101001010111 (b) 111111000101101001

Solution

(a) 1100101001010111 (b) 00111111000101101001

C A 5 7 = CA5716 3 F 1 6 9 = 3F16916

Two zeros have been added in part (b) to complete a 4-bit group at the left.

Related Problem

Convert the binary number 1001111011110011100 to hexadecimal.

e ee ee ee e e
T TT TT TT T T

Hexadecimal-to-Binary Conversion

To convert from a hexadecimal number to a binary number, reverse the process and replace 

each hexadecimal symbol with the appropriate four bits.

EXAMPLE 2–25

Determine the binary numbers for the following hexadecimal numbers:

(a) 10A416 (b) CF8E16 (c) 974216

Solution

(a) 1 0 A 4 (b)  C F 8 E (c) 9 7 4 2

1000010100100 1100111110001110 1001011101000010

In part (a), the MSB is understood to have three zeros preceding it, thus forming a 

4-bit group.

Related Problem

Convert the hexadecimal number 6BD3 to binary.

f f fT T T f f f fT T T T f f f fT T T T
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It should be clear that it is much easier to deal with a hexadecimal number than with the 

equivalent binary number. Since conversion is so easy, the hexadecimal system is widely 

used for representing binary numbers in programming, printouts, and displays.

Hexadecimal-to-Decimal Conversion

One way to find the decimal equivalent of a hexadecimal number is to first convert the 

hexadecimal number to binary and then convert from binary to decimal.

EXAMPLE 2–26

Convert the following hexadecimal numbers to decimal:

(a) 1C16 (b) A8516

Solution

Remember, convert the hexadecimal number to binary first, then to decimal.

(a) 1 C

00011100 = 24 + 23 + 22
= 16 + 8 + 4 = 2810

(b) A 8 5

101010000101 = 211 + 29 + 27 + 22 + 20
= 2048 + 512 + 128 + 4 + 1 = 269310

Related Problem

Convert the hexadecimal number 6BD to decimal.

f f fT T T

f fT T

EXAMPLE 2–27

Convert the following hexadecimal numbers to decimal:

(a) E516 (b) B2F816

Solution

Recall from Table 2–3 that letters A through F represent decimal numbers 10 through 

15, respectively.

(a) E516 = (E * 16) + (5 * 1) = (14 * 16) + (5 * 1) = 224 + 5 = 22910

(b)  B2F816 = (B * 4096)  + (2 * 256) + (F * 16)  + (8 * 1)

= (11 * 4096) + (2 * 256) + (15 * 16) + (8 * 1)

= 45,056  + 512 +  240 + 8 = 45,81610

Related Problem

Convert 60A16 to decimal.

Another way to convert a hexadecimal number to its decimal equivalent is to multiply 

the decimal value of each hexadecimal digit by its weight and then take the sum of these 

products. The weights of a hexadecimal number are increasing powers of 16 (from right to 

left). For a 4-digit hexadecimal number, the weights are

163 162 161 160

4096 256 16 1
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Decimal-to-Hexadecimal Conversion

Repeated division of a decimal number by 16 will produce the equivalent hexadecimal 

number, formed by the remainders of the divisions. The first remainder produced is the least 

significant digit (LSD). Each successive division by 16 yields a remainder that becomes a 

digit in the equivalent hexadecimal number. This procedure is similar to repeated division 

by 2 for decimal-to-binary conversion that was covered in Section 2–3. Example 2–28 

illustrates the procedure. Note that when a quotient has a fractional part, the fractional part 

is multiplied by the divisor to get the remainder.

EXAMPLE 2–28

Convert the decimal number 650 to hexadecimal by repeated division by 16.

Solution

Hexadecimal 

remainder

� 40 0.625 � 16 � 10 �

� 2 0.5 � 16 � 8 �

� 0 0.125 � 16 � 2 �

Stop when whole number Hexadecimal number

quotient is zero.
MSD LSD

2 8 A

.125
2

16

.5
40

16

.625
650

16
A

8

2

Related Problem

Convert decimal 2591 to hexadecimal.

Hexadecimal Addition

Addition can be done directly with hexadecimal numbers by remembering that the hexadeci-

mal digits 0 through 9 are equivalent to decimal digits 0 through 9 and that hexadecimal digits 

A through F are equivalent to decimal numbers 10 through 15. When adding two hexadeci-

mal numbers, use the following rules. (Decimal numbers are indicated by a subscript 10.)

1. In any given column of an addition problem, think of the two hexadecimal digits in

terms of their decimal values. For instance, 516 = 510 and C16 = 1210.

2. If the sum of these two digits is 1510 or less, bring down the corresponding hexa-

decimal digit.

3. If the sum of these two digits is greater than 1510, bring down the amount of the sum

that exceeds 1610 and carry a 1 to the next column.

EXAMPLE 2–29

Add the following hexadecimal numbers:

(a) 2316 + 1616  (b) 5816 + 2216  (c) 2B16 + 8416  (d) DF16 + AC16

Solution

(a) 2316

+  1616

3916

 right column: 316 + 616 = 310 + 610 = 910 = 916

left column: 216 + 116 = 210 + 110 = 310 = 316
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Related Problem

Add 4C16 and 3A16.

(b) 5816

+  2216

7A16

 right column: 816 + 216 = 810 + 210 = 1010 = A16

left column: 516 + 216 = 510 + 210 = 710 = 716

(c) 2B16

+  8416

AF16

 right column: B16 + 416 = 1110 + 410 = 1510 = F16

left column: 216 + 816 = 210 + 810 = 1010 = A16

(d) DF16

+  AC16

18B16

 right column: F16 + C16 = 1510 + 1210 = 2710

2710 2 1610 = 1110 = B16 with a 1 carry

left column: D16 + A16 + 116 = 1310 + 1010 + 110 = 2410

2410 2 1610 = 810 = 816 with a 1 carry

Hexadecimal Subtraction

As you have learned, the 2’s complement allows you to subtract by adding binary numbers. 

Since a hexadecimal number can be used to represent a binary number, it can also be used 

to represent the 2’s complement of a binary number.

There are three ways to get the 2’s complement of a hexadecimal number. Method 1 is 

the most common and easiest to use. Methods 2 and 3 are alternate methods.

Method 1:  Convert the hexadecimal number to binary. Take the 2’s complement of 

the binary number. Convert the result to hexadecimal. This is illustrated 

in Figure 2–4.

Example:

2’s complement
in hexadecimal

2’s complement
in binary

BinaryHexadecimal

D611010110001010102A

FIGURE 2–4 Getting the 2’s complement of a hexadecimal number, Method 1.

Example:

2’s complement
in hexadecimal

1’s complement
in hexadecimal

plus 1

Subtract from
maximum

Hexadecimal

D6D5 + 1FF – 2A2A

FIGURE 2–5 Getting the 2’s complement of a hexadecimal number, Method 2.

Method 2:  Subtract the hexadecimal number from the maximum hexadecimal 

number and add 1. This is illustrated in Figure 2–5.
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Method 3:  Write the sequence of single hexadecimal digits. Write the sequence in 

reverse below the forward sequence. The 1’s complement of each hex 

digit is the digit directly below it. Add 1 to the resulting number to get the 

2’s complement. This is illustrated in Figure 2–6.

Example:

2’s complement
in hexadecimal

D6

1’s complement
in hexadecimal

plus 1

D5 + 1
2
D

3
C

4
B

0
F

Hexadecimal

2A

1
E

2
D

3
C

4
B

5
A

6
9

7
8

8
7

9
6

A
5

B
4

C
3

D
2

E
1

F
0

0
F

1
E

5
A

6
9

7
8

8
7

9
6

A
5

B
4

C
3

D
2

E
1

F
0

FIGURE 2–6 Getting the 2’s complement of a hexadecimal number, Method 3.

EXAMPLE 2–30

Subtract the following hexadecimal numbers:

(a) 8416 - 2A16 (b) C316 - 0B16

Solution

(a) 2A16 = 00101010

2’s complement of 2A16 = 11010110 = D616 (using Method 1)

8416

+  D616

15A16

Add

Drop carry, as in 2>s complement addition

The difference is 5A16.

(b) 0B16 = 00001011

2’s complement of 0B16 = 11110101 = F516 (using Method 1)

C316

+  F516

1B816

Add

Drop carry

The difference is B816.

Related Problem

Subtract 17316 from BCD16.

SECTION 2–8 CHECKUP

1. Convert the following binary numbers to hexadecimal:

(a) 10110011  (b) 110011101000

2. Convert the following hexadecimal numbers to binary:

(a) 5716  (b) 3A516  (c) F80B16

3. Convert 9B3016 to decimal.

4. Convert the decimal number 573 to hexadecimal.
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5. Add the following hexadecimal numbers directly:

(a) 1816 + 3416  (b) 3F16 + 2A16

6. Subtract the following hexadecimal numbers:

(a) 7516 - 2116  (b) 9416 - 5C16

2–9 Octal Numbers

Like the hexadecimal number system, the octal number system provides a convenient way 

to express binary numbers and codes. However, it is used less frequently than hexadecimal 

in conjunction with computers and microprocessors to express binary quantities for input 

and output purposes.

After completing this section, you should be able to

u Write the digits of the octal number system

u Convert from octal to decimal

u Convert from decimal to octal

u Convert from octal to binary

u Convert from binary to octal

The octal number system is composed of eight digits, which are

0, 1, 2, 3, 4, 5, 6, 7

To count above 7, begin another column and start over:

10, 11, 12, 13, 14, 15, 16, 17, 20, 21, c

Counting in octal is similar to counting in decimal, except that the digits 8 and 9 are not 

used. To distinguish octal numbers from decimal numbers or hexadecimal numbers, we 

will use the subscript 8 to indicate an octal number. For instance, 158 in octal is equivalent 

to 1310 in decimal and D in hexadecimal. Sometimes you may see an “o” or a “Q” follow-

ing an octal number.

Octal-to-Decimal Conversion

Since the octal number system has a base of eight, each successive digit position is an 

increasing power of eight, beginning in the right-most column with 80. The evaluation of 

an octal number in terms of its decimal equivalent is accomplished by multiplying each 

digit by its weight and summing the products, as illustrated here for 23748.

 Weight: 83 82 81 80

 Octal number: 2   3  7  4

 23748 = (2 * 83)  + (3 * 82)  + (7 * 81) + (4 * 80)

= (2 * 512) + (3 * 64) + (7 * 8)  + (4 * 1)

=  1024  +  192 +  56 + 4 = 127610

Decimal-to-Octal Conversion

A method of converting a decimal number to an octal number is the repeated division-

by-8 method, which is similar to the method used in the conversion of decimal numbers to 

binary or to hexadecimal. To show how it works, let’s convert the decimal number 359 to 
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octal. Each successive division by 8 yields a remainder that becomes a digit in the equiva-

lent octal number. The first remainder generated is the least significant digit (LSD).

7

4

5

Remainder

� 44 0.875 � 8 �

� 5 0.5 � 8 �

� 0 0.625 � 8 �

Stop when whole number Octal number
quotient is zero.

MSD LSD

5 4 7

.625
5

8

.5
44

8

.875
359

8

Octal-to-Binary Conversion

Because each octal digit can be represented by a 3-bit binary number, it is very easy to 

convert from octal to binary. Each octal digit is represented by three bits as shown in 

Table 2–4.

TABLE 2–4

Octal/binary conversion.

Octal Digit 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

To convert an octal number to a binary number, simply replace each octal digit with the 

appropriate three bits.

EXAMPLE 2–31

Convert each of the following octal numbers to binary:

(a) 138 (b)  258 (c)  1408 (d)  75268

Solution

(a)  1 3 (b)  2 5 (c)  1 4 0 (d)  7 5 2 6

001011 010101 001100000 111101010110

Related Problem

Convert each of the binary numbers to decimal and verify that each value agrees with 

the decimal value of the corresponding octal number.

V VT T V VT T V V VT T T V V V VT T T T

Binary-to-Octal Conversion

Conversion of a binary number to an octal number is the reverse of the octal-to-binary 

conversion. The procedure is as follows: Start with the right-most group of three bits and, 

moving from right to left, convert each 3-bit group to the equivalent octal digit. If there 

are not three bits available for the left-most group, add either one or two zeros to make a 

complete group. These leading zeros do not affect the value of the binary number.



24

U U

T T

U U U

T T T

U U U U
T T T T

U U U U

T T T T

EXAMPLE 2–32

Convert each of the following binary numbers to octal:

(a) 110101 (b)  101111001 (c)  100110011010 (d)  11010000100

Solution

(a) 110101 (b)  101111001

6 5 = 658 5 7 1 = 5718

(c) 100110011010 (d)  011010000100

4 6 3 2 = 46328 3 2 0 4 = 32048

Related Problem

Convert the binary number 1010101000111110010 to octal.

SECTION 2–9 CHECKUP

1. Convert the following octal numbers to decimal:

(a) 738 (b) 1258

2. Convert the following decimal numbers to octal:

(a) 9810 (b) 16310

3. Convert the following octal numbers to binary:

(a) 468 (b) 7238 (c) 56248

4. Convert the following binary numbers to octal:

(a) 110101111 (b) 1001100010 (c) 10111111001




