Grid-Interfacing Converter Systems with Enhanced Voltage Quality

Contents

- Introduction
- Grid-interfacing systems
- Structure and functionalities
- Control design and implementation
- Conclusions

Transition to the future grid

- Growing electricity consumption
- Demanding high-quality electricity

- Improving energy efficiency
- Applying sustainable energy

Conventional electricity grid

Voltage quality problems

• Harmonics • Unbalance • Fluctuations • Dips

Distributed generation in the grid

Path to the future grid

Path to the future grid

Independent distributed sources powered dc bus

 Common distributed sources powered dc bus with isolation techniques

An example of coupling the utility grid and a local grid/micro-grid

Adapted series-parallel structure

Common distributed sources powered dc bus

Reconfiguring system functionalities

- Conventional power quality enhancement
 - Unified PQ conditioners (UPQC)

 UPQC + energy storage (batteries, super-capacitors, distributed sources, etc.)

Reconfiguring system functionalities

Circuit presentation of the proposed grid-interfacing system

Subscripts:

- +, : positive and negative sequence;
- 1: fundamental components
- h: harmonics

Reconfiguring system functionalities

Multi-level control objectives

- Level 1: Maintaining good voltage quality for local loads Dispatching power within the local grid (micro-grids)
- Level 2: Active power filtering function
- System Level: Grid interactive control, grid support, power transfer

Comparison with shunt systems

(a) Series-parallel system

(b) Shunt-connected system

Control design and implementation

Employed configuration of the laboratory system

Control design and implementation

Overall control structure

• Parallel converter

Control diagram of the parallel converter

Instability improvement under no-load conditions

Selective harmonic regulation

$$G_{c\alpha}(s) = K_P + \sum_{n=1,3,5,7}^{9} \frac{2\omega_{bn} K_{In} s}{s^2 + 2\omega_{bn} s + (n\omega_c)^2}$$

Bode plots of the open-loop transfer function with multiple PR controllers

Disturbance sensitivity improvement

Inner current feedback loop $F_{i\alpha}(s) = K_{fI} \frac{s}{s + 2\pi f_{hp}}$

System sensitivity to current disturbances

Control design – series converter

Control diagram of the series converter

Control design – series converter

Inverter output voltage to feedback current

$$G_{v2i_f}(s) = w_i \frac{L_g C s^2 + 1}{L L_g C s^3 + (L + L_g) s} + (1 - w_i) \frac{1}{L L_g C s^3 + (L + L_g) s}$$

when

$$L_{sum} = L + L_g, w_i = L/L_{sum}$$

 $G_{v2i_f}(s) = \frac{1}{sL_{sum}}$

Bode plots of open-loop transfer function

Laboratory system

Conclusions and recommendations

- •All common grid disturbances at the distribution level can be mitigated by the proposed approach
- •The voltage quality can be improved at both user and grid side, combing with distributed power generation
- Grid interaction control integrating grid-impedance adaptability
- Scaled up grid-interfacing systems for smart-grid research