
6.3 Conditional Jumps (Continued)
 6.3.4 Conditional Jump Applications

6.4 Conditional Loop Instructions
6.4.1 LOOPZ and LOOPE Instructions
6.4.2 LOOPNZ and LOOPNE Instructions

6.5 Conditional Structures
6.5.1 Block-Structured IF Statements
6.5.2 Compound Expressions

6.5.3 WHILE Loops
6.5.4 Table-Driven Selection

Lecture No.15

Lecture Outlines

6.3.4 Conditional Jump Applications

Testing Status Bits One of the things assembly language does best is bit testing. Often, we
do not want to change the values of the bits we’re testing, but we do want to modify the values
of CPU status flags. Conditional jump instructions often use these status flags to determine
whether or not to transfer control to code labels. Suppose, for example, that an 8-bit memory
operand named status contains status information about an external device attached to the
computer. The following instructions jump to a label if bit 5 is set, indicating that the device is
offline:

mov al,status
test al,00100000b ; test bit 5
jnz DeviceOffline

The following statements jump to a label if any of the bits 0, 1, or 4 are set:

mov al,status
test al,00010011b ; test bits 0,1,4
jnz InputDataByte

Jumping to a label if bits 2, 3, and 7 are all set requires both the AND and CMP instructions:

mov
and
cmp
je

al,status
al,10001100b
al,10001100b
ResetMachine

; mask bits 2,3,7
; all bits set?
; yes: jump to label

Larger of Two Integers The following code compares the unsigned integers in EAX and
EBX and moves the larger of the two to EDX:

mov edx,eax
cmp eax,ebx
jae L1
mov edx,ebx

L1:

; assume EAX is larger
; if EAX is >= EBX
; jump to L1
; else move EBX to EDX
; EDX contains the larger integer

1

2

.data
V1 WORD ?
V2 WORD ?
V3 WORD ?
.code

mov ax,V1 ; assume V1 is smallest
cmp ax,V2 ; if AX <= V2
jbe L1 ; jump to L1
mov ax,V2 ; else move V2 to AX

L1: cmp ax,V3 ; if AX <= V3
jbe L2 ; jump to L2
mov ax,V3 ; else move V3 to AX

L2:

Loop until Key Pressed In the following 32-bit code, a loop runs continuously until the user
presses a standard alphanumeric key. The ReadKey method from the Irvine32 library sets the
Zero flag if no key is present in the input buffer:

.data
char BYTE ?
.code
L1: mov eax,10 ; create 10 ms delay

call Delay
call ReadKey ; check for key
jz L1 ; repeat if no key
mov char,AL ; save the character

The foregoing code inserts a 10-millisecond delay in the loop to give MS-Windows time to process
event messages. If you omit the delay, keystrokes may be ignored.

Application: Sequential Search of an Array
A common programming task is to search for values in an array that meet some criteria. For
example, the following program looks for the first nonzero value in an array of 16-bit integers.
If it finds one, it displays the value; otherwise, it displays a message stating that a nonzero value
was not found:

; Scanning an Array (ArrayScan.asm)
; Scan an array for the first nonzero value.

INCLUDE Irvine32.inc

.data
intArray SWORD 0,0,0,0,1,20,35,-12,66,4,0
;intArray SWORD 1,0,0,0 ; alternate test data
;intArray SWORD 0,0,0,0 ; alternate test data
;intArray SWORD 0,0,0,1 ; alternate test data
noneMsg BYTE "A non-zero value was not found",0

This program contains alternate test data that are currently commented out. Uncomment each of
these lines to test the program with different data configurations.

Smallest of Three Integers The following instructions compare the unsigned 16-bit values in
the variables V1, V2, and V3 and move the smallest of the three to AX:

3

.code
main PROC

mov ebx,OFFSET intArray ; point to the array
mov ecx,LENGTHOF intArray ; loop counter

L1: cmp WORD PTR [ebx],0 ; compare value to zero
jnz found ; found a value
add ebx,2 ; point to next
loop L1 ; continue the loop
jmp notFound ; none found

found: ; display the value
movsx eax,WORD PTR[ebx] ; sign-extend into EAX
call WriteInt
jmp quit

notFound: ; display "not found" message
mov edx,OFFSET noneMsg
call WriteString

quit:
call Crlf
exit

main ENDP
END main

Application: Simple String Encryption
The XOR instruction has an interesting property. If an integer X is XORed with Y and the result-
ing value is XORed with Y again, the value produced is X:

This reversible property of XOR provides an easy way to perform a simple form of data encryp-
tion: A plain text message is transformed into an encrypted string called cipher text by XORing
each of its characters with a character from a third string called a key. The intended viewer can
use the key to decrypt the cipher text and produce the original plain text.

Example Program We will demonstrate a simple program that uses symmetric encryption,
a process by which the same key is used for both encryption and decryption. The following steps
occur in order at runtime:

1. The user enters the plain text.
2. The program uses a single-character key to encrypt the plain text, producing the cipher text,

which is displayed on the screen.
3. The program decrypts the cipher text, producing and displaying the original plain text.

Here is sample output from the program:

X Y⊗() Y⊗() X=

4

Program Listing Here is a complete program listing:

; Encryption Program (Encrypt.asm)

INCLUDE Irvine32.inc
KEY = 239 ; any value between 1-255
BUFMAX = 128 ; maximum buffer size

.data
sPrompt BYTE "Enter the plain text:",0
sEncrypt BYTE "Cipher text: ",0
sDecrypt BYTE "Decrypted: ",0
buffer BYTE BUFMAX+1 DUP(0)
bufSize DWORD ?

.code
main PROC

call InputTheString ; input the plain text
call TranslateBuffer ; encrypt the buffer
mov edx,OFFSET sEncrypt ; display encrypted message
call DisplayMessage
call TranslateBuffer ; decrypt the buffer
mov edx,OFFSET sDecrypt ; display decrypted message
call DisplayMessage
exit

main ENDP

;---
InputTheString PROC
;
; Prompts user for a plaintext string. Saves the string
; and its length.
; Receives: nothing
; Returns: nothing
;---

pushad ; save 32-bit registers
mov edx,OFFSET sPrompt ; display a prompt
call WriteString
mov ecx,BUFMAX ; maximum character count
mov edx,OFFSET buffer ; point to the buffer
call ReadString ; input the string
mov bufSize,eax ; save the length
call Crlf
popad
ret

InputTheString ENDP

;---
DisplayMessage PROC
;
; Displays the encrypted or decrypted message.
; Receives: EDX points to the message
; Returns: nothing
;---

5

pushad
call WriteString
mov edx,OFFSET buffer ; display the buffer
call WriteString
call Crlf
call Crlf
popad
ret

DisplayMessage ENDP

;---
TranslateBuffer PROC
;
; Translates the string by exclusive-ORing each
; byte with the encryption key byte.
; Receives: nothing
; Returns: nothing
;---

pushad
mov ecx,bufSize ; loop counter
mov esi,0 ; index 0 in buffer

L1:
xor buffer[esi],KEY ; translate a byte
inc esi ; point to next byte
loop L1
popad
ret

TranslateBuffer ENDP
END main

You should never encrypt important data with a single-character encryption key, because it can
be too easily decoded. Instead, the chapter exercises suggest that you use an encryption key con-
taining multiple characters to encrypt and decrypt the plain text.

6.3.5 Section Review
1. Which jump instructions follow unsigned integer comparisons?

2. Which jump instructions follow signed integer comparisons?

3. Which conditional jump instruction is equivalent to JNAE?

4. Which conditional jump instruction is equivalent to the JNA instruction?

5. Which conditional jump instruction is equivalent to the JNGE instruction?

6. (Yes/No): Will the following code jump to the label named Target?

mov ax,8109h
cmp ax,26h
jg Target

6

6.4 Conditional Loop Instructions

6.4.1 LOOPZ and LOOPE Instructions
The LOOPZ (loop if zero) instruction works just like the LOOP instruction except that it has one
additional condition: the Zero flag must be set in order for control to transfer to the destination
label. The syntax is

LOOPZ destination

The LOOPE (loop if equal) instruction is equivalent to LOOPZ, and they share the same
opcode. They perform the following tasks:

ECX = ECX - 1
if ECX > 0 and ZF = 1, jump to destination

Otherwise, no jump occurs, and control passes to the next instruction. LOOPZ and LOOPE
do not affect any of the status flags. In 32-bit mode, ECX is the loop counter register, and in
64-bit mode, RCX is the counter.

6.4.2 LOOPNZ and LOOPNE Instructions
The LOOPNZ (loop if not zero) instruction is the counterpart of LOOPZ. The loop continues
while the unsigned value of ECX is greater than zero (after being decremented) and the Zero flag
is clear. The syntax is

LOOPNZ destination

The LOOPNE (loop if not equal) instruction is equivalent to LOOPNZ, and they share the
same opcode. They perform the following tasks:

ECX = ECX - 1
if ECX > 0 and ZF = 0, jump to destination

Otherwise, nothing happens, and control passes to the next instruction.

Example The following code excerpt (from Loopnz.asm) scans each number in an array until
a nonnegative number is found (when the sign bit is clear). Notice that we push the flags on the
stack before the ADD instruction because ADD will modify the flags. Then the flags are restored
by POPFD just before the LOOPNZ instruction executes:

.data
array SWORD -3,-6,-1,-10,10,30,40,4
sentinel SWORD 0
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

L1: test WORD PTR [esi],8000h ; test sign bit
pushfd ; push flags on stack
add esi,TYPE array ; move to next position
popfd ; pop flags from stack
loopnz L1 ; continue loop

7

jnz quit ; none found
sub esi,TYPE array ; ESI points to value

quit:

If a nonnegative value is found, ESI is left pointing at it. If the loop fails to find a positive
number, it stops when ECX equals zero. In that case, the JNZ instruction jumps to label quit,
and ESI points to the sentinel value (0), located in memory immediately following the array.

6.4.3 Section Review
1. (True/False): The LOOPE instruction jumps to a label when (and only when) the Zero flag

is clear.

2. (True/False): In 32-bit mode, the LOOPNZ instruction jumps to a label when ECX is
greater than zero and the Zero flag is clear.

3. (True/False): The destination label of a LOOPZ instruction must be no farther than �128 or
�127 bytes from the instruction immediately following LOOPZ.

4. Modify the LOOPNZ example in Section 6.4.2 so that it scans for the first negative value in
the array. Change the array initializers so they begin with positive values.

5. Challenge: The LOOPNZ example in Section 6.4.2 relies on a sentinel value to handle the possi-
bility that a positive value might not be found. What might happen if you removed the sentinel?

6.5 Conditional Structures
We define a conditional structure to be one or more conditional expressions that trigger a choice
between different logical branches. Each branch causes a different sequence of instructions to
execute. No doubt you have already used conditional structures in a high-level programming
language. But you may not know how language compilers translate conditional structures into
low-level machine code. Let’s find out how that is done.

6.5.1 Block-Structured IF Statements
An IF structure impli that a boolean expression is followed by two lists of statements; one per-
formed when the expression is true, and another performed when the expression is false:

if(boolean-expression)
statement-list-1

else
statement-list-2

The else portion of the statement is optional. In assembly language, we code this structure in
steps. First, we evaluate the boolean expression in such a way that one of the CPU status flags is
affected. Second, we construct a series of jumps that transfer control to the two lists of state-
ments, based on the value of the relevant CPU status flag.

Example 1 In the following C++ code, two assignment statements are executed if op1 is
equal to op2:

if(op1 == op2)
{

X = 1;
Y = 2;

}

8

We translate this IF statement into assembly language with a CMP instruction followed by
conditional jumps. Because op1 and op2 are memory operands (variables), one of them must be
moved to a register before executing CMP. The following code implements the IF statement as
efficiently as possible by allowing the code to “fall through” to the two MOV instructions that
we want to execute when the boolean condition is true:

mov eax,op1
cmp eax,op2 ; op1 == op2?
jne L1 ; no: skip next
mov X,1 ; yes: assign X and Y
mov Y,2

L1:

If we implemented the �� operator using JE, the resulting code would be slightly less com-
pact (six instructions rather than five):

mov eax,op1
cmp eax,op2 ; op1 == op2?
je L1 ; yes: jump to L1
jmp L2 ; no: skip assignments

L1: mov X,1 ; assign X and Y
mov Y,2

L2:

Example 2 In the NTFS file storage system, the size of a disk cluster depends on the disk vol-
ume’s overall capacity. In the following pseudocode, we set the cluster size to 4,096 if the
volume size (in the variable named terrabytes) is less than 16 TBytes. Otherwise, we set the
cluster size to 8,192:

clusterSize = 8192;
if terrabytes < 16
 clusterSize = 4096;

Here’s a way to implement the pseudocode in assembly language:

mov clusterSize,8192 ; assume larger cluster
cmp terrabytes, 16 ; smaller than 16 TB?
jae next
mov clusterSize,4096 ; switch to smaller cluster

next:

Example 3 The following pseudocode statement has two branches:

if op1 > op2
call Routine1

else
call Routine2

end if

As you see from the foregoing example, the same conditional structure can be translated into
assembly language in multiple ways. When examples of compiled code are shown in this chapter,
they represent only what a hypothetical compiler might produce.

9

In the following assembly language translation of the pseudocode, we assume that op1
and op2 are signed doubleword variables. When comparing variables, one must be moved to a
register:

mov eax,op1 ; move op1 to a register
cmp eax,op2 ; op1 > op2?
jg A1 ; yes: call Routine1
call Routine2 ; no: call Routine2
jmp A2 ; exit the IF statement

A1: call Routine1
A2:

White Box Testing
Complex conditional statements may have multiple execution paths, making them hard to
debug by inspection (looking at the code). Programmers often implement a technique known as
white box testing, which verifies a subroutine’s inputs and corresponding outputs. White box
testing requires you to have a copy of the source code. You assign a variety of values to the input
variables. For each combination of inputs, you manually trace through the source code and
verify the execution path and outputs produced by the subroutine. Let’s see how this is done in
assembly language by implementing the following nested-IF statement:

if op1 == op2
 if X > Y

call Routine1
 else

call Routine2
 end if
else
 call Routine3
end if

Following is a possible translation to assembly language, with line numbers added for reference.
It reverses the initial condition (op1 �� op2) and immediately jumps to the ELSE portion. All
that is left to translate is the inner IF-ELSE statement:

1: mov eax,op1
2: cmp eax,op2 ; op1 == op2?
3: jne L2 ; no: call Routine3

; process the inner IF-ELSE statement.
4: mov eax,X
5: cmp eax,Y ; X > Y?
6: jg L1 ; yes: call Routine1
7: call Routine2 ; no: call Routine2
8: jmp L3 ; and exit
9: L1: call Routine1 ; call Routine1
10: jmp L3 ; and exit
11: L2: call Routine3
12: L3:

10

Table 6-6 shows the results of white box testing of the sample code. In the first four columns,
test values have been assigned to op1, op2, X, and Y. The resulting execution paths are verified
in columns 5 and 6.

6.5.2 Compound Expressions

Logical AND Operator
Assembly language easily implements compound boolean expressions containing AND oper-
ators. Consider the following pseudocode, in which the values being compared are assumed to
be unsigned integers:

if (al > bl) AND (bl > cl)
X = 1

end if

Short-Circuit Evaluation The following is a straightforward implementation using short-
circuit evaluation, in which the second expression is not evaluated if the first expression is false.
This is the norm for high-level languages:

cmp al,bl ; first expression...
ja L1
jmp next

L1: cmp bl,cl ; second expression...
ja L2
jmp next

L2: mov X,1 ; both true: set X to 1
next:

We can reduce the code to five instructions by changing the initial JA instruction to JBE:

cmp al,bl ; first expression...
jbe next ; quit if false
cmp bl,cl ; second expression
jbe next ; quit if false
mov X,1 ; both are true

next:

The 29% reduction in code size (seven instructions down to five) results from letting the CPU
fall through to the second CMP instruction if the first JBE is not taken.

Table 6-6 Testing the Nested IF Statement.

op1 op2 X Y Line Execution Sequence Calls

10 20 30 40 1, 2, 3, 11, 12 Routine3

10 20 40 30 1, 2, 3, 11, 12 Routine3

10 10 30 40 1, 2, 3, 4, 5, 6, 7, 8, 12 Routine2

10 10 40 30 1, 2, 3, 4, 5, 6, 9, 10, 12 Routine1

11

Logical OR Operator
When a compound expression contains subexpressions joined by the OR operator, the overall expres-
sion is true if any of the subexpressions is true. Let’s use the following pseudocode as an example:

if (al > bl) OR (bl > cl)
 X = 1

In the following implementation, the code branches to L1 if the first expression is true; other-
wise, it falls through to the second CMP instruction. The second expression reverses the > oper-
ator and uses JBE instead:

cmp al,bl ; 1: compare AL to BL
ja L1 ; if true, skip second expression
cmp bl,cl ; 2: compare BL to CL
jbe next ; false: skip next statement

L1: mov X,1 ; true: set X = 1
next:

For a given compound expression, there are multiple ways the expression can be imple-
mented in assembly language.

6.5.3 WHILE Loops
A WHILE loop tests a condition first before performing a block of statements. As long as the
loop condition remains true, the statements are repeated. The following loop is written in C++:

while(val1 < val2)
{

val1++;
val2--;

}

When implementing this structure in assembly language, it is convenient to reverse the loop condi-
tion and jump to endwhile if a condition becomes true. Assuming that val1 and val2 are variables, we
must copy one of them to a register at the beginning and restore the variable’s value at the end:

mov eax,val1 ; copy variable to EAX
beginwhile:

cmp eax,val2 ; if not (val1 < val2)
jnl endwhile ; exit the loop
inc eax ; val1++;
dec val2 ; val2--;
jmp beginwhile ; repeat the loop

endwhile:
mov val1,eax ; save new value for val1

EAX is a proxy (substitute) for val1 inside the loop. References to val1 must be through EAX.
JNL is used, implying that val1 and val2 are signed integers.

Example: IF statement Nested in a Loop
High-level languages are particularly good at representing nested control structures. In the fol-
lowing C++ code, an IF statement is nested inside a WHILE loop. It calculates the sum of all
array elements greater than the value in sample:

12

int array[] = {10,60,20,33,72,89,45,65,72,18};
int sample = 50;
int ArraySize = sizeof array / sizeof sample;
int index = 0;
int sum = 0;
while(index < ArraySize)
{

if(array[index] > sample)
{
 sum += array[index];

}
index++;

}

Before coding this loop in assembly language, let’s use the flowchart in Fig. 6-1
to describe the logic. To simplify the translation and speed up execution by reducing the
number of memory accesses, registers have been substituted for variables. EDX � sample,
EAX � sum, ESI � index, and ECX � ArraySize (a constant). Label names have been added
to the shapes.

Assembly Code The easiest way to generate assembly code from a flowchart is to implement
separate code for each flowchart shape. Note the direct correlation between the flowchart labels
and labels used in the following source code (see Flowchart.asm):

.data
sum DWORD 0
sample DWORD 50
array DWORD 10,60,20,33,72,89,45,65,72,18
ArraySize = ($ - Array) / TYPE array

.code
main PROC

mov eax,0 ; sum
mov edx,sample
mov esi,0 ; index
mov ecx,ArraySize

L1: cmp esi,ecx ; if esi < ecx
jl L2
jmp L5

L2: cmp array[esi*4], edx ; if array[esi] > edx
jg L3
jmp L4

L3: add eax,array[esi*4]

L4: inc esi
jmp L1

L5: mov sum,eax

A review question at the end of Section 6.5 will give you a chance to improve this code.

13

Figure 6–1 Loop containing IF statement.

6.5.4 Table-Driven Selection
Table-driven selection is a way of using a table lookup to replace a multiway selection structure.
To use it, you must create a table containing lookup values and the offsets of labels or proce-
dures, and then you must use a loop to search the table. This works best when a large number of
comparisons are made.

For example, the following is part of a table containing single-character lookup values and
addresses of procedures:

eax �� array[esi]

sum � eax

Begin

end

eax � sum
edx � sample
 esi � index
ecx � ArraySize

esi < ecx?

TRUE

TRUE

L1:

L3:

L2:

L5:

L4:

FALSE

FALSEarray[esi] > edx?

inc esi

14

.data
CaseTable BYTE 'A' ; lookup value
 DWORD Process_A ; address of procedure
 BYTE 'B'
 DWORD Process_B

(etc.)

Let’s assume Process_A, Process_B, Process_C, and Process_D are located at addresses
120h, 130h, 140h, and 150h, respectively. The table would be arranged in memory as shown in
Fig. 6–2.

Figure 6–2 Table of procedure offsets.

Example Program In the following example program (ProcTable.asm), the user inputs a
character from the keyboard. Using a loop, the character is compared to each entry in a lookup
table. The first match found in the table causes a call to the procedure offset stored immediately
after the lookup value. Each procedure loads EDX with the offset of a different string, which is
displayed during the loop:

; Table of Procedure Offsets (ProcTable.asm)

; This program contains a table with offsets of procedures.
; It uses the table to execute indirect procedure calls.

INCLUDE Irvine32.inc
.data
CaseTable BYTE 'A' ; lookup value

DWORD Process_A ; address of procedure
EntrySize = ($ - CaseTable)

BYTE 'B'
DWORD Process_B
BYTE 'C'
DWORD Process_C
BYTE 'D'
DWORD Process_D

NumberOfEntries = ($ - CaseTable) / EntrySize
prompt BYTE "Press capital A,B,C,or D: ",0

msgA BYTE "Process_A",0
msgB BYTE "Process_B",0
msgC BYTE "Process_C",0
msgD BYTE "Process_D",0

Define a separate message string for each procedure:

'A' 'B' 'C' 'D'00000120 00000130 00000140 00000150

Address of Process_B

Lookup value

15

.code
main PROC

mov edx,OFFSET prompt ; ask user for input
call WriteString
call ReadChar ; read character into AL
mov ebx,OFFSET CaseTable ; point EBX to the table
mov ecx,NumberOfEntries ; loop counter

L1:
cmp al,[ebx] ; match found?
jne L2 ; no: continue
call NEAR PTR [ebx + 1] ; yes: call the procedure

call WriteString ; display message
call Crlf
jmp L3 ; exit the search

L2:
add ebx,EntrySize ; point to the next entry
loop L1 ; repeat until ECX = 0

L3:
exit

main ENDP

Process_A PROC
mov edx,OFFSET msgA
ret

Process_A ENDP

Process_B PROC
mov edx,OFFSET msgB
ret

Process_B ENDP

Process_C PROC
mov edx,OFFSET msgC
ret

Process_C ENDP

Process_D PROC
mov edx,OFFSET msgD
ret

Process_D ENDP
END main

The table-driven selection method involves some initial overhead, but it can reduce the
amount of code you write. A table can handle a large number of comparisons, and it can be more

This CALL instruction calls the procedure whose address is stored in the memory location refer-
enced by EBX+1. An indirect call such as this requires the NEAR PTR operator.

Each of the following procedures moves a different string offset to EDX:

easily modified than a long series of compare, jump, and CALL instructions. A table can even be

reconfigured at runtime.

