
6.1 Conditional Branching
6.2 Boolean and Comparison Instructions

6.2.1 The CPU Status Flags
6.2.2 AND Instruction
6.2.3 OR Instruction
6.2.4 Bit-Mapped Sets
6.2.5 XOR Instruction
6.2.6 NOT Instruction
6.2.7 TEST Instruction
6.2.8 CMP Instruction
6.2.9 Setting and Clearing Individual CPU Flags
6.2.10 Boolean Instructions in 64-Bit Mode

6.3 Conditional Jumps
6.3.1 Conditional Structures
6.3.2 Jcond Instruction
6.3.3 Types of Conditional Jump Instructions

Lecture No.14

Lecture Outlines

6.1 Conditional Branching
A programming language that permits decision making lets you alter the flow of control, using a
technique known as conditional branching. Every IF statement, switch statement, or conditional
loop found in high-level languages has built-in branching logic. Assembly language, as primitive
as it is, provides all the tools you need for decision-making logic. In this chapter, we will see
how the translation works, from high-level conditional statements to low-level implementation
code.

Programs that deal with hardware devices must be able to manipulate individual bits in
numbers. Individual bits must be tested, cleared, and set. Data encryption and compression
also rely on bit manipulation. We will show how to perform these operations in assembly
language.

6.2 Boolean and Comparison Instructions
In Chapter 1, we introduced the four basic operations of boolean algebra: AND, OR, XOR,
and NOT. These operations can be carried out at the binary bit level, using assembly language
instructions. These operations are also important at the boolean expression level, in IF state-
ments, for example. First, we will look at the bitwise instructions. The techniques used here
could be used to manipulate control bits for hardware devices, implement communication pro-
tocols, or encrypt data, just to name a few applications. The Intel instruction set contains the
AND, OR, XOR, and NOT instructions, which directly implement boolean operations on
binary bits, shown in Table 6-1. In addition, the TEST instruction is a nondestructive AND
operation.

1

2

6.2.1 The CPU Status Flags
Boolean instructions affect the Zero, Carry, Sign, Overflow, and Parity flags. Here’s a quick
review of their meanings:

• The Zero flag is set when the result of an operation equals zero.
• The Carry flag is set when an operation generates a carry out of the highest bit of the destina-

tion operand.
• The Sign flag is a copy of the high bit of the destination operand, indicating that it is negative

if set and positive if clear. (Zero is assumed to be positive.)
• The Overflow flag is set when an instruction generates a result that is outside the signed range

of the destination operand.
• The Parity flag is set when an instruction generates an even number of 1 bits in the low byte

of the destination operand.

6.2.2 AND Instruction
The AND instruction performs a boolean (bitwise) AND operation between each pair of match-
ing bits in two operands and places the result in the destination operand:

AND destination,source

The following operand combinations are permitted, although immediate opperands can be no larger
than 32 bits:

AND reg,reg
AND reg,mem
AND reg,imm
AND mem,reg
AND mem,imm

The operands can be 8, 16, 32, or 64 bits, and they must be the same size. For each matching
bit in the two operands, the following rule applies: If both bits equal 1, the result bit is 1; other-
wise, it is 0. The following truth table from Chapter 1 labels the input bits x and y. The third col-
umn shows the value of the expression x ∧ y:

Table 6-1 Selected Boolean Instructions.

Operation Description

AND Boolean AND operation between a source operand and a destination operand.

OR Boolean OR operation between a source operand and a destination operand.

XOR Boolean exclusive-OR operation between a source operand and a destination operand.

NOT Boolean NOT operation on a destination operand.

TEST Implied boolean AND operation between a source and destination operand, setting the
CPU flags appropriately.

x y x ∧ y
0 0 0

0 1 0

1 0 0

1 1 1

3

The AND instruction lets you clear 1 or more bits in an operand without affecting other bits.
The technique is called bit masking, much as you might use masking tape when painting a
house to cover areas (such as windows) that should not be painted. Suppose, for example, that
a control byte is about to be copied from the AL register to a hardware device. Further, we
will assume that the device resets itself when bits 0 and 3 are cleared in the control byte.
Assuming that we want to reset the device without modifying any other bits in AL, we can write
the following:

and AL,11110110b ; clear bits 0 and 3, leave others unchanged

For example, suppose AL is initially set to 10101110 binary. After ANDing it with 11110110,
AL equals 10100110:

mov al,10101110b
and al,11110110b ; result in AL = 10100110

Flags The AND instruction always clears the Overflow and Carry flags. It modifies the
Sign, Zero, and Parity flags in a way that is consistent with the value assigned to the destina-
tion operand. For example, suppose the following instruction results in a value of Zero in the
EAX register. In that case, the Zero flag will be set:

and eax,1Fh

Converting Characters to Upper case
The AND instruction provides an easy way to translate a letter from lowercase to uppercase.
If we compare the ASCII codes of capital A and lowercase a, it becomes clear that only bit 5 is
different:

0 1 1 0 0 0 0 1 = 61h ('a')
0 1 0 0 0 0 0 1 = 41h ('A')

The rest of the alphabetic characters have the same relationship. If we AND any character
with 11011111 binary, all bits are unchanged except for bit 5, which is cleared. In the following
example, all characters in an array are converted to uppercase:

.data
array BYTE 50 DUP(?)
.code

mov ecx,LENGTHOF array
mov esi,OFFSET array

L1: and BYTE PTR [esi],11011111b ; clear bit 5
inc esi
loop L1

6.2.3 OR Instruction
The OR instruction performs a boolean OR operation between each pair of matching bits in two
operands and places the result in the destination operand:

OR destination,source

4

The OR instruction uses the same operand combinations as the AND instruction:

OR reg,reg
OR reg,mem
OR reg,imm
OR mem,reg
OR mem,imm

The operands can be 8, 16, 32, or 64 bits, and they must be the same size. For each matching
bit in the two operands, the output bit is 1 when at least one of the input bits is 1. The following
truth table (from Chapter 1) describes the boolean expression x ∨ y:

The OR instruction is particularly useful when you need to set 1 or more bits in an operand
without affecting any other bits. Suppose, for example, that your computer is attached to a servo
motor, which is activated by setting bit 2 in its control byte. Assuming that the AL register con-
tains a control byte in which each bit contains some important information, the following code
only sets the bit in position 2:

or AL,00000100b ; set bit 2, leave others unchanged

For example, if AL is initially equal to 11100011 binary and then we OR it with 00000100, the
result equals 11100111:

mov al,11100011b
or al,00000100b ; result in AL = 11100111

Flags The OR instruction always clears the Carry and Overflow flags. It modifies the Sign,
Zero, and Parity flags in a way that is consistent with the value assigned to the destination oper-
and. For example, you can OR a number with itself (or zero) to obtain certain information about
its value:

or al,al

The values of the Zero and Sign flags indicate the following about the contents of AL:

x y x ∨ y

0 0 0

0 1 1

1 0 1

1 1 1

Zero Flag Sign Flag Value in AL Is . . .

Clear Clear Greater than zero

Set Clear Equal to zero

Clear Set Less than zero

5

6.2.4 Bit-Mapped Sets
Some applications manipulate sets of items selected from a limited-sized universal set. Exam-
ples might be employees within a company, or environmental readings from a weather monitor-
ing station. In such cases, binary bits can indicate set membership. Rather than holding pointers
or references to objects in a container such as a Java HashSet, an application can use a bit vector
(or bit map) to map the bits in a binary number to an array of objects.

For example, the following binary number uses bit positions numbered from 0 on the right to 31
on the left to indicate that array elements 0, 1, 2, and 31 are members of the set named SetX:

SetX = 10000000 00000000 00000000 00000111

(The bytes have been separated to improve readability.) We can easily check for set membership
by ANDing a particular member’s bit position with a 1:

mov eax,SetX
and eax,10000b ; is element[4] a member of SetX?

If the AND instruction in this example clears the Zero flag, we know that element [4] is a
member of SetX.

Set Complement
The complement of a set can be generated using the NOT instruction, which reverses all bits.
Therefore, the complement of the SetX that we introduced is generated in EAX using the
following instructions:

mov eax,SetX
not eax ; complement of SetX

Set Intersection
The AND instruction produces a bit vector that represents the intersection of two sets. The fol-
lowing code generates and stores the intersection of SetX and SetY in EAX:

mov eax,SetX
and eax,SetY

This is how the intersection of SetX and SetY is produced:

1000000000000000000000000000111 (SetX)
AND 1000001010100000000011101100011 (SetY)
--

1000000000000000000000000000011 (intersection)

It is hard to imagine any faster way to generate a set intersection. A larger domain would require
more bits than could be held in a single register, making it necessary to use a loop to AND all of
the bits together.

Set Union
The OR instruction produces a bit map that represents the union of two sets. The following code
generates the union of SetX and SetY in EAX:

mov eax,SetX
or eax,SetY

6

This is how the union of SetX and SetY is generated by the OR instruction:

 1000000000000000000000000000111 (SetX)
OR 1000001010100000000011101100011 (SetY)
--

 1000001010100000000011101100111 (union)

6.2.5 XOR Instruction
The XOR instruction performs a boolean exclusive-OR operation between each pair of matching
bits in two operands and stores the result in the destination operand:

XOR destination,source

The XOR instruction uses the same operand combinations and sizes as the AND and OR
instructions. For each matching bit in the two operands, the following applies: If both bits are the
same (both 0 or both 1), the result is 0; otherwise, the result is 1. The following truth table
describes the boolean expression x ⊕ y:

A bit exclusive-ORed with 0 retains its value, and a bit exclusive-ORed with 1 is toggled
(complemented). XOR reverses itself when applied twice to the same operand. The following
truth table shows that when bit x is exclusive-ORed with bit y twice, it reverts to its original
value:

As you will find out in Section 6.3.4, this “reversible” property of XOR makes it an ideal tool for
a simple form of symmetric encryption.

Flags The XOR instruction always clears the Overflow and Carry flags. XOR modifies the
Sign, Zero, and Parity flags in a way that is consistent with the value assigned to the destination
operand.

Checking the Parity Flag Parity checking is a function performed on a binary number that
counts the number of 1 bits contained in the number; if the resulting count is even, we say that
the data has even parity; if the count is odd, the data has odd parity. In x86 processors, the Parity

x y x ⊕ y
0 0 0

0 1 1

1 0 1

1 1 0

x y x ⊕ y (x ⊕ y) ⊕ y
0 0 0 0

0 1 1 0

1 0 1 1

1 1 0 1

7

flag is set when the lowest byte of the destination operand of a bitwise or arithmetic operation
has even parity. Conversely, when the operand has odd parity, the flag is cleared. An effective
way to check the parity of a number without changing its value is to exclusive-OR the number
with zero:

mov al,10110101b ; 5 bits = odd parity
xor al,0 ; Parity flag clear (odd)
mov al,11001100b ; 4 bits = even parity
xor al,0 ; Parity flag set (even)

Visual Studio uses PE � 1 to indicate even parity, and PE � 0 to indicate odd parity.

16-Bit Parity You can check the parity of a 16-bit integer by performing an exclusive-OR
between the upper and lower bytes:

mov ax,64C1h ; 0110 0100 1100 0001
xor ah,al ; Parity flag set (even)

Imagine the set bits (bits equal to 1) in each register as being members of an 8-bit set. The XOR
instruction zeroes all bits belonging to the intersection of the sets. XOR also forms the union
between the remaining bits. The parity of this union will be the same as the parity of the entire
16-bit integer.

What about 32-bit values? If we number the bytes from B0 through B3, we can calculate the
parity as B0 XOR B1 XOR B2 XOR B3.

6.2.6 NOT Instruction
The NOT instruction toggles (inverts) all bits in an operand. The result is called the one’s com-
plement. The following operand types are permitted:

NOT reg
NOT mem

For example, the one’s complement of F0h is 0Fh:

mov al,11110000b
not al ; AL = 00001111b

Flags No flags are affected by the NOT instruction.

6.2.7 TEST Instruction
The TEST instruction performs an implied AND operation between each pair of matching bits in
two operands and sets the Sign, Zero, and Parity flags based on the value assigned to the destina-
tion operand. The only difference between TEST and AND is that TEST does not modify the
destination operand. The TEST instruction permits the same operand combinations as the AND
instruction. TEST is particularly valuable for finding out whether individual bits in an operand
are set.

8

Example: Testing Multiple Bits The TEST instruction can check several bits at once. Sup-
pose we want to know whether bit 0 or bit 3 is set in the AL register. We can use the following
instruction to find this out:

test al,00001001b; test bits 0 and 3

(The value 00001001 in this example is called a bit mask.) From the following example data
sets, we can infer that the Zero flag is set only when all tested bits are clear:

0 0 1 0 0 1 0 1 <- input value
0 0 0 0 1 0 0 1 <- test value
0 0 0 0 0 0 0 1 <- result: ZF = 0

0 0 1 0 0 1 0 0 <- input value
0 0 0 0 1 0 0 1 <- test value
0 0 0 0 0 0 0 0 <- result: ZF = 1

Flags The TEST instruction always clears the Overflow and Carry flags. It modifies the Sign,
Zero, and Parity flags in the same way as the AND instruction.

6.2.8 CMP Instruction
Having examined all of the bitwise instructions, let’s now turn to instructions used in logical
(boolean) expressions. The most common boolean expressions involve some type of compari-
son. The following pseudocode snippets support this idea:

if A > B ...
while X > 0 and X < 200 ...
if check_for_error(N) = true

In x86 assembly language we use the CMP instruction to compare integers. Character codes are
also integers, so they work with CMP as well. Floating-point values require specialized compar-
ison instructions, which we cover in Chapter 12.

The CMP (compare) instruction performs an implied subtraction of a source operand from a
destination operand. Neither operand is modified:

CMP destination,source

CMP uses the same operand combinations as the AND instruction.

Flags The CMP instruction changes the Overflow, Sign, Zero, Carry, Auxiliary Carry, and
Parity flags according to the value the destination operand would have had if actual subtraction
had taken place. When two unsigned operands are compared, the Zero and Carry flags indicate
the following relations between operands:

CMP Results ZF CF

Destination < source 0 1

Destination > source 0 0

Destination = source 1 0

9

When two signed operands are compared, the Sign, Zero, and Overflow flags indicate the fol-
lowing relations between operands:

CMP is a valuable tool for creating conditional logic structures. When you follow CMP with a
conditional jump instruction, the result is the assembly language equivalent of an IF statement.

Examples Let’s look at three code fragments showing how flags are affected by the CMP
instruction. When AX equals 5 and is compared to 10, the Carry flag is set because subtracting
10 from 5 requires a borrow:

mov ax,5
cmp ax,10 ; ZF = 0 and CF = 1

Comparing 1000 to 1000 sets the Zero flag because subtracting the source from the destination
produces zero:

mov ax,1000
mov cx,1000
cmp cx,ax ; ZF = 1 and CF = 0

Comparing 105 to 0 clears both the Zero and Carry flags because subtracting 0 from 105 gener-
ates a positive, nonzero value.

mov si,105
cmp si,0 ; ZF = 0 and CF = 0

6.2.9 Setting and Clearing Individual CPU Flags
How can you easily set or clear the Zero, Sign, Carry, and Overflow flags? There are several
ways, some of which require modifying the destination operand. To set the Zero flag, TEST or
AND an operand with Zero; to clear the Zero flag, OR an operand with 1:

test al,0 ; set Zero flag
and al,0 ; set Zero flag
or al,1 ; clear Zero flag

TEST does not modify the operand, whereas AND does. To set the Sign flag, OR the highest bit
of an operand with 1. To clear the Sign flag, AND the highest bit with 0:

or al,80h ; set Sign flag
and al,7Fh ; clear Sign flag

To set the Carry flag, use the STC instruction; to clear the Carry flag, use CLC:

stc ; set Carry flag
clc ; clear Carry flag

To set the Overflow flag, add two positive values that produce a negative sum. To clear the Over-
flow flag, OR an operand with 0:

CMP Results Flags

Destination < source SF ≠ OF

Destination > source SF = OF

Destination = source ZF = 1

10

mov al,7Fh ; AL = +127
inc al ; AL = 80h (-128), OF=1
or eax,0 ; clear Overflow flag

6.2.10 Boolean Instructions in 64-Bit Mode
For the most part, 64-bit instructions work exactly the same in 64-Bit mode as they do in 32-bit
mode. For example, if the source operand is a constant whose size is less than 32 bits and the desti-
nation is a 64-bit register or memory operand, all bits in the destination operand are affected:

.data
allones QWORD 0FFFFFFFFFFFFFFFFh
.code

mov rax,allones ; RAX = FFFFFFFFFFFFFFFF
and rax,80h ; RAX = 0000000000000080
mov rax,allones ; RAX = FFFFFFFFFFFFFFFF
and rax,8080h ; RAX = 0000000000008080
mov rax,allones ; RAX = FFFFFFFFFFFFFFFF
and rax,808080h ; RAX = 0000000000808080

But when the source operand is a 32-bit constant or register, only the lower 32 bits of the des-
tination operand are affected. In the following example, only the lower 32 bits of RAX are
modified:

mov rax,allones ; RAX = FFFFFFFFFFFFFFFF
and rax,80808080h ; RAX = FFFFFFFF80808080

The same results are true when the destination operand is a memory operand. Clearly, 32-bit
operands are a special case that you must consider separately from other operand sizes.

6.3 Conditional Jumps

6.3.1 Conditional Structures
There are no explicit high-level logic structures in the x86 instruction set, but you can implement
them using a combination of comparisons and jumps. Two steps are involved in executing a
conditional statement: First, an operation such as CMP, AND, or SUB modifies the CPU status
flags. Second, a conditional jump instruction tests the flags and causes a branch to a new
address. Let’s look at a couple of examples.

Example 1 The CMP instruction in the following example compares EAX to Zero. The JZ
(Jump if zero) instruction jumps to label L1 if the Zero flag was set by the CMP instruction:

cmp eax,0
jz L1 ; jump if ZF = 1
.
.

L1:

11

Example 2 The AND instruction in the following example performs a bitwise AND on the
DL register, affecting the Zero flag. The JNZ (jump if not Zero) instruction jumps if the Zero
flag is clear:

and dl,10110000b
jnz L2 ; jump if ZF = 0
.
.

L2:

6.3.2 Jcond Instruction
A conditional jump instruction branches to a destination label when a status flag condition is
true. Otherwise, if the flag condition is false, the instruction immediately following the condi-
tional jump is executed. The syntax is as follows:

Jcond destination

cond refers to a flag condition identifying the state of one or more flags. The following examples
are based on the Carry and Zero flags:

CPU status flags are most commonly set by arithmetic, comparison, and boolean instructions.
Conditional jump instructions evaluate the flag states, using them to determine whether or not
jumps should be taken.

Using the CMP Instruction Suppose you want to jump to label L1 when EAX equals 5. In
the next example, if EAX equals 5, the CMP instruction sets the Zero flag; then, the JE instruc-
tion jumps to L1 because the Zero flag is set:

cmp eax,5
je L1 ; jump if equal

(The JE instruction always jumps based on the value of the Zero flag.) If EAX were not equal to
5, CMP would clear the Zero flag, and the JE instruction would not jump.

JC Jump if carry (Carry flag set)

JNC Jump if not carry (Carry flag clear)

JZ Jump if zero (Zero flag set)

JNZ Jump if not zero (Zero flag clear)

In the following example, the JL instruction jumps to label L1 because AX is less than 6:

mov ax,5
cmp ax,6

 L1 jl ; jump if less

In the following example, the jump is taken because AX is greater than 4:

mov ax,5
cmp ax,4

 L1 jg ; jump if greater

12

6.3.3 Types of Conditional Jump Instructions
The x86 instruction set has a large number of conditional jump instructions. They are able to
compare signed and unsigned integers and perform actions based on the values of individual
CPU flags. The conditional jump instructions can be divided into four groups:

• Jumps based on specific flag values
• Jumps based on equality between operands or the value of (E)CX
• Jumps based on comparisons of unsigned operands
• Jumps based on comparisons of signed operands

Table 6-2 shows a list of jumps based on the Zero, Carry, Overflow, Parity, and Sign flags.

Equality Comparisons
Table 6-3 lists jump instructions based on evaluating equality. In some cases, two operands are
compared; in other cases, a jump is taken based on the value of CX, ECX, or RCX. In the table,
the notations leftOp and rightOp refer to the left (destination) and right (source) operands in a
CMP instruction:

CMP leftOp,rightOp

The operand names reflect the ordering of operands for relational operators in algebra. For
example, in the expression X < Y, X is called leftOp and Y is called rightOp.

Table 6-2 Jumps Based on Specific Flag Values.

Mnemonic Description Flags / Registers

JZ Jump if zero ZF = 1

JNZ Jump if not zero ZF = 0

JC Jump if carry CF = 1

JNC Jump if not carry CF = 0

JO Jump if overflow OF = 1

JNO Jump if not overflow OF = 0

JS Jump if signed SF = 1

JNS Jump if not signed SF = 0

JP Jump if parity (even) PF = 1

JNP Jump if not parity (odd) PF = 0

Table 6-3 Jumps Based on Equality.

Mnemonic

JE

JNE

JCXZ

JECXZ

JRCXZ

Description

Jump if equal (leftOp � rightOp)

Jump if not equal (leftOp � rightOp)

Jump if CX � 0

Jump if ECX � 0

Jump if RCX � 0 (64-bit mode)

13

Although the JE instruction is equivalent to JZ (jump if Zero) and JNE is equivalent to JNZ
(jump if not Zero), it’s best to select the mnemonic (JE or JZ) that best indicates your intention
to either compare two operands or examine a specific status flag.

Following are code examples that use the JE, JNE, JCXZ, and JECXZ instructions. Examine the
comments carefully to be sure that you understand why the conditional jumps were (or were not) taken.

Example 1:

mov edx,0A523h
cmp edx,0A523h
jne L5 ; jump not taken
je L1 ; jump is taken

Example 2:

mov bx,1234h
sub bx,1234h
jne L5 ; jump not taken
je L1 ; jump is taken

Example 3:

mov cx,0FFFFh
inc cx
jcxz L2 ; jump is taken

Example 4:

xor ecx,ecx
jecxz L2 ; jump is taken

Unsigned Comparisons
Jumps based on comparisons of unsigned numbers are shown in Table 6-4. The operand names
reflect the order of operands, as in the expression (leftOp < rightOp). The jumps in Table 6-4 are
only meaningful when comparing unsigned values. Signed operands use a different set of jumps.

Signed Comparisons
Table 6-5 displays a list of jumps based on signed comparisons. The following instruction
sequence demonstrates the comparison of two signed values:

mov al,+127 ; hexadecimal value is 7Fh
cmp al,-128 ; hexadecimal value is 80h
ja IsAbove ; jump not taken, because 7Fh < 80h
jg IsGreater ; jump taken, because +127 > -128

The JA instruction, which is designed for unsigned comparisons, does not jump because
unsigned 7Fh is smaller than unsigned 80h. The JG instruction, on the other hand, is designed
for signed comparisons—it jumps because +127 is greater than �128.

In the following code examples, examine the comments to be sure you understand why the
jumps were (or were not) taken:

14Example 1

mov edx,-1
cmp edx,0
jnl L5 ; jump not taken (-1 >= 0 is false)
jnle L5 ; jump not taken (-1 > 0 is false)
jl L1 ; jump is taken (-1 < 0 is true)

Example 2

mov bx,+32
cmp bx,-35
jng L5 ; jump not taken (+32 <= -35 is false)
jnge L5 ; jump not taken (+32 < -35 is false)
jge L1 ; jump is taken (+32 >= -35 is true)

Example 3

mov ecx,0
cmp ecx,0
jg L5
jnl L1

; jump not taken (0 > 0 is false)
; jump is taken (0 >= 0 is true)

Example 4

mov ecx,0
cmp ecx,0
jl L5
jng L1

; jump not taken (0 < 0 is false)
; jump is taken (0 <= 0 is true)

Table 6-4 Jumps Based on Unsigned Comparisons.

Mnemonic

JA

JNBE

JAE

JNB

JB

JNAE

JBE

JNA

Description

Jump if above (if leftOp � rightOp)

Jump if not below or equal (same as JA)

Jump if above or equal (if leftOp 	 rightOp)

Jump if not below (same as JAE)

Jump if below (if leftOp
 rightOp)

Jump if not above or equal (same as JB)

Jump if below or equal (if leftOp � rightOp)

Jump if not above (same as JBE)

Table 6-5 Jumps Based on Signed Comparisons.

Mnemonic

JG

JNLE

JGE

JNL

JL

JNGE

JLE

JNG

Description

Jump if greater (if leftOp � rightOp)

Jump if not less than or equal (same as JG)

Jump if greater than or equal (if leftOp 	 rightOp)

Jump if not less (same as JGE)

Jump if less (if leftOp
 rightOp)

Jump if not greater than or equal (same as JL)

Jump if less than or equal (if leftOp � rightOp)

Jump if not greater (same as JLE)

