
5.4 The Irvine32 Library (Continued)

5.4.3 Individual Procedure Descriptions (Continued)
5.4.4 Library Test Programs

Lecture No.13

Lecture Outlines

1

ReadChar The ReadChar procedure reads a single character from the keyboard and returns
the character in the AL register. The character is not echoed in the console window. Sample
call:

.data
char BYTE ?
.code
call ReadChar
mov char,al

If the user presses an extended key such as a function key, arrow key, Ins, or Del, the proce-
dure sets AL to zero, and AH contains a keyboard scan code. A list of scan codes is shown on the
page facing the book’s inside front cover. The upper half of EAX is not preserved. The following
pseudocode describes the possible outcomes after calling ReadChar:

if an extended key was pressed
AL = 0
AH = keyboard scan code

else
AL = ASCII key value

endif

ReadDec The ReadDec procedure reads a 32-bit unsigned decimal integer from the keyboard
and returns the value in EAX. Leading spaces are ignored. The return value is calculated from
all valid digits found until a nondigit character is encountered. For example, if the user enters
123ABC, the value returned in EAX is 123. Following is a sample call:

.data
intVal DWORD ?
.code
call ReadDec
mov intVal,eax

ReadDec affects the Carry flag in the following ways:
• If the integer is blank, EAX � 0 and CF � 1
• If the integer contains only spaces, EAX � 0 and CF � 1
• If the integer is larger than 232�1, EAX � 0 and CF � 1
• Otherwise, EAX holds the converted integer and CF � 0

ReadFromFile The ReadFromFile procedure reads an input disk file into a memory
buffer. When you call ReadFromFile, pass it an open file handle in EAX, the offset of a
buffer in EDX, and the maximum number of bytes to read in ECX. When ReadFromFile
returns, check the value of the Carry flag: If CF is clear, EAX contains a count of the
number of bytes read from the file. But if CF is set, EAX contains a numeric system error
code. You can call the WriteWindowsMsg procedure to get a text representation of the error.

5.4.3 Individual Procedure Descriptions (Continued)
In this section, we describe how each of the procedures in the Irvine32 library is used. We will
omit a few of the more advanced procedures, which will be explained in later chapters.

2

In the following example, as many as 5000 bytes are copied from the file into the buffer
variable:

.data
BUFFER_SIZE = 5000
buffer BYTE BUFFER_SIZE DUP(?)
bytesRead DWORD ?

.code
mov edx,OFFSET buffer ; points to buffer
mov ecx,BUFFER_SIZE ; max bytes to read
call ReadFromFile ; read the file

If the Carry flag were clear at this point, you could execute the following instruction:

mov bytesRead,eax ; count of bytes actually read

But if the Carry flag were set, you would call WriteWindowsMsg procedure, which displays
a string that contains the error code and description of the most recent error generated by the
application:

call WriteWindowsMsg

ReadHex The ReadHex procedure reads a 32-bit hexadecimal integer from the keyboard and
returns the corresponding binary value in EAX. No error checking is performed for invalid charac-
ters. You can use both uppercase and lowercase letters for the digits A through F. A maximum of eight
digits may be entered (additional characters are ignored). Leading spaces are ignored. Sample call:

.data
hexVal DWORD ?
.code
call ReadHex
mov hexVal,eax

ReadInt The ReadInt procedure reads a 32-bit signed integer from the keyboard and returns the
value in EAX. The user can type an optional leading plus or minus sign, and the rest of the number
may only consist of digits. ReadInt sets the Overflow flag and display an error message if the value
entered cannot be represented as a 32-bit signed integer (range: �2,147,483,648 to �2,147,483,647).
The return value is calculated from all valid digits found until a nondigit character is encountered.
For example, if the user enters �123ABC, the value returned is �123. Sample call:

.data
intVal SDWORD ?
.code
call ReadInt
mov intVal,eax

ReadKey The ReadKey procedure performs a no-wait keyboard check. In other words, it
inspects the keyboard input buffer to see if a key has been pressed by the user. If no keyboard
data is found, the Zero flag is set. If a keypress is found by ReadKey, the Zero flag is cleared and
AL is assigned either zero or an ASCII code. If AL contains zero, the user may have pressed a
special key (function key, arrow key, etc.) The AH register contains a virtual scan code, DX

3

contains a virtual key code, and EBX contains the keyboard flag bits. The following pseudocode
describes the various outcomes when calling ReadKey:

if no_keyboard_data then
ZF = 1

else
ZF = 0
if AL = 0 then
extended key was pressed, and AH = scan code, DX = virtual

key code, and EBX = keyboard flag bits
else
AL = the key's ASCII code

endif
endif

The upper halves of EAX and EDX are overwritten when ReadKey is called.

ReadString The ReadString procedure reads a string from the keyboard, stopping when the
user presses the Enter key. Pass the offset of a buffer in EDX and set ECX to the maximum num-
ber of characters the user can enter, plus 1 (to save space for the terminating null byte). The pro-
cedure returns the count of the number of characters typed by the user in EAX. Sample call:

.data
buffer BYTE 21 DUP(0) ; input buffer
byteCount DWORD ? ; holds counter
.code
mov edx,OFFSET buffer ; point to the buffer
mov ecx,SIZEOF buffer ; specify max characters
call ReadString ; input the string
mov byteCount,eax ; number of characters

ReadString automatically inserts a null terminator in memory at the end of the string. The fol-
lowing is a hexadecimal and ASCII dump of the first 8 bytes of buffer after the user has entered
the string “ABCDEFG”:

The variable byteCount equals 7.

SetTextColor The SetTextColor procedure (Irvine32 library only) sets the foreground and
background colors for text output. When calling SetTextColor, assign a color attribute to EAX.
The following predefined color constants can be used for both foreground and background:

41 42 43 44 45 46 47 00 ABCDEFG

black � 0 red � 4 gray � 8 lightRed � 12

blue � 1 magenta � 5 lightBlue � 9 lightMagenta � 13

green � 2 brown � 6 lightGreen � 10 yellow � 14

cyan � 3 lightGray � 7 lightCyan � 11 white � 15

4

Color constants are defined in the Irvine32.inc file. To get a complete color byte value, multi-
ply the background color by 16 and add it to the foreground color. The following constant, for
example, indicates yellow characters on a blue background:

yellow � (blue * 16)

The following statements set the color to white on a blue background:

mov eax,white � (blue * 16) ; white on blue
call SetTextColor

An alternative way to express color constants is to use the SHL operator. You shift the back-
ground color leftward by 4 bits before adding it to the foreground color.

yellow + (blue SHL 4)

The bit shifting is performed at assembly time, so it can only have constant operands. In
Chapter 7, you will learn how to shift integers at runtime. You can find a detailed explanation of
video attributes in Section 16.3.2.

Str_length The Str_length procedure returns the length of a null-terminated string. Pass the
string’s offset in EDX. The procedure returns the string’s length in EAX. Sample call:

.data
buffer BYTE "abcde",0
bufLength DWORD ?
.code
mov edx,OFFSET buffer ; point to string
call Str_length ; EAX = 5
mov bufLength,eax ; save length

WaitMsg The WaitMsg procedure displays the message “Press any key to continue. . .” and
waits for the user to press a key. This procedure is useful when you want to pause the screen dis-
play before data scrolls off and disappears. It has no input parameters. Sample call:

call WaitMsg

WriteBin The WriteBin procedure writes an integer to the console window in ASCII binary
format. Pass the integer in EAX. The binary bits are displayed in groups of four for easy reading.
Sample call:

mov eax,12346AF9h
call WriteBin

The following output would be displayed by our sample code:

0001 0010 0011 0100 0110 1010 1111 1001

WriteBinB The WriteBinB procedure writes a 32-bit integer to the console window in ASCII
binary format. Pass the value in the EAX register and let EBX indicate the display size in bytes
(1, 2, or 4). The bits are displayed in groups of four for easy reading. Sample call:

mov eax,00001234h
mov ebx,TYPE WORD ; 2 bytes
call WriteBinB ; displays 0001 0010 0011 0100

5

WriteChar The WriteChar procedure writes a single character to the console window. Pass the
character (or its ASCII code) in AL. Sample call:

mov al,'A'
call WriteChar ; displays: "A"

WriteDec The WriteDec procedure writes a 32-bit unsigned integer to the console window in
decimal format with no leading zeros. Pass the integer in EAX. Sample call:

mov eax,295
call WriteDec ; displays: "295"

WriteHex The WriteHex procedure writes a 32-bit unsigned integer to the console window in
8-digit hexadecimal format. Leading zeros are inserted if necessary. Pass the integer in EAX.
Sample call:

mov eax,7FFFh
call WriteHex ; displays: "00007FFF"

WriteHexB The WriteHexB procedure writes a 32-bit unsigned integer to the console window
in hexadecimal format. Leading zeros are inserted if necessary. Pass the integer in EAX and let
EBX indicate the display format in bytes (1, 2, or 4). Sample call:

mov eax,7FFFh
mov ebx,TYPE WORD ; 2 bytes
call WriteHexB ; displays: "7FFF"

WriteInt The WriteInt procedure writes a 32-bit signed integer to the console window in
decimal format with a leading sign and no leading zeros. Pass the integer in EAX. Sample
call:

mov eax,216543
call WriteInt ; displays: "+216543"

WriteString The WriteString procedure writes a null-terminated string to the console window.
Pass the string’s offset in EDX. Sample call:

.data
prompt BYTE "Enter your name: ",0
.code
mov edx,OFFSET prompt
call WriteString

WriteToFile The WriteToFile procedure writes the contents of a buffer to an output file. Pass it a
valid file handle in EAX, the offset of the buffer in EDX, and the number of bytes to write in ECX.
When the procedure returns, if EAX is greater than zero, it contains a count of the number of bytes
written; otherwise, an error occurred. The following code calls WriteToFile:

BUFFER_SIZE = 5000
.data
fileHandle DWORD ?
buffer BYTE BUFFER_SIZE DUP(?)

6

.code
mov eax,fileHandle
mov edx,OFFSET buffer
mov ecx,BUFFER_SIZE
call WriteToFile

The following pseudocode describes how to handle the value returned in EAX after calling
WriteToFile:

if EAX = 0 then
error occurred when writing to file
call WriteWindowsMessage to see the error

else
EAX = number of bytes written to the file

endif

WriteWindowsMsg The WriteWindowsMsg procedure writes a string containing the most
recent error generated by your application to the Console window when executing a call to a sys-
tem function. Sample call:

call WriteWindowsMsg

The following is an example of a message string:

Error 2: The system cannot find the file specified.

5.4.4 Library Test Programs

Tutorial: Library Test #1
In this hands-on tutorial, you will write a program that demonstrates integer input–output with
screen colors.
Step 1: Begin the program with a standard heading:

; Library Test #1: Integer I/O (InputLoop.asm)

; Tests the Clrscr, Crlf, DumpMem, ReadInt, SetTextColor,
; WaitMsg, WriteBin, WriteHex, and WriteString procedures.
INCLUDE Irvine32.inc

Step 2: Declare a COUNT constant that will determine the number of times the program’s loop
repeats later on. Then two constants, BlueTextOnGray and DefaultColor, are defined here so
they can be used later on when we change the console window colors. The color byte stores the
background color in the upper 4 bits, and the foreground (text) color in the lower 4 bits. We have
not yet discussed bit shifting instructions, but you can multiply the background color by 16 to
shift it into the high 4 bits of the color attribute byte:

.data
COUNT = 4
BlueTextOnGray = blue + (lightGray * 16)
DefaultColor = lightGray + (black * 16)

7

Step 3: Declare an array of signed doubleword integers, using hexadecimal constants. Also, add
a string that will be used as prompt when the program asks the user to input an integer:

arrayD SDWORD 12345678h,1A4B2000h,3434h,7AB9h
prompt BYTE "Enter a 32-bit signed integer: ",0

Step 4: In the code area, declare the main procedure and write code that initializes ECX to
blue text on a light gray background. The SetTextColor method changes the foreground and
background color attributes of all text written to the window from this point onward in the pro-
gram’s execution:

.code
main PROC

mov eax,BlueTextOnGray
call SetTextColor

In order to set the background of the console window to the new color, you must use the Clrscr
procedure to clear the screen:

call Clrscr ; clear the screen

Step 5: Assign to ESI the offset of arrayD, which marks the beginning of the range we wish to
display:

mov esi,OFFSET arrayD

Step 6: EBX is assigned an integer value that specifies the size of each array element. Since we
are displaying an array of doublewords, EBX equals 4. This is the value returned by the expres-
sion TYPE arrayD:

mov ebx,TYPE arrayD ; doubleword = 4 bytes

Step 7: ECX must be set to the number of units that will be displayed, using the LENGTHOF
operator. Then, when DumpMem is called, it has all the information it needs:

mov ecx,LENGTHOF arrayD ; number of units in arrayD
call DumpMem ; display memory

The following figure shows the type of output that would be generated by DumpMem:

Next, the program will display a range of doubleword values in memory, identified by the variable
named arrayD. The DumpMem procedure requires parameters to be passed in the ESI, EBX, and
ECX registers.

Dump of offset 00405000

12345678 1A4B2000 00003434 00007AB9

Next, the user will be asked to input a sequence of four signed integers. After each integer is entered,
it is redisplayed in signed decimal, hexadecimal, and binary.

8

Step 8: Output a blank line by calling the Crlf procedure. Then, initialize ECX to the constant
value COUNT so ECX can be the counter for the loop that follows:

call Crlf
mov ecx,COUNT

Step 9: We need to display a string that asks the user to enter an integer. Assign the offset of the
string to EDX, and call the WriteString procedure. Then, call the ReadInt procedure to receive
input from the user. The value the user enters will be automatically stored in EAX:

L1: mov edx,OFFSET prompt
call WriteString
call ReadInt ; input integer into EAX
call Crlf ; display a newline

Step 10: Display the integer stored in EAX in signed decimal format by calling the WriteInt pro-
cedure. Then call Crlf to move the cursor to the next output line:

call WriteInt ; display in signed decimal
call Crlf

Step 11: Display the same integer (still in EAX) in hexadecimal and binary formats, by calling
the WriteHex and WriteBin procedures:

call WriteHex ; display in hexadecimal
call Crlf
call WriteBin ; display in binary
call Crlf
call Crlf

Step 12: You will insert a Loop instruction that allows the loop to repeat at Label L1. This
instruction first decrements ECX, and then jumps to label L1 only if ECX is not equal to zero:

Loop L1 ; repeat the loop

Step 13: After the loop ends, we want to display a “Press any key…” message and then pause the
output and wait for a key to be pressed by the user. To do this, we call the WaitMsg procedure:

call WaitMsg ; "Press any key..."

Step 14: Just before the program ends, the console window attributes are returned to the default
colors (light gray characters on a black background).

mov eax, DefaultColor
call SetTextColor
call Clrscr

Here are the closing lines of the program:

exit
main ENDP
END main

The remainder of the program’s output is shown in the following figure, using four sample inte-
gers entered by the user:

9

A complete listing of the program appears below, with a few added comment lines:

; Library Test #1: Integer I/O (InputLoop.asm)

; Tests the Clrscr, Crlf, DumpMem, ReadInt, SetTextColor,
; WaitMsg, WriteBin, WriteHex, and WriteString procedures.

include Irvine32.inc

.data
COUNT = 4
BlueTextOnGray = blue + (lightGray * 16)
DefaultColor = lightGray + (black * 16)
arrayD SDWORD 12345678h,1A4B2000h,3434h,7AB9h
prompt BYTE "Enter a 32-bit signed integer: ",0

.code
main PROC

; Select blue text on a light gray background

mov eax,BlueTextOnGray
call SetTextColor
call Clrscr ; clear the screen

; Display an array using DumpMem.

mov esi,OFFSET arrayD ; starting OFFSET
mov ebx,TYPE arrayD ; doubleword = 4 bytes
mov ecx,LENGTHOF arrayD ; number of units in arrayD
call DumpMem ; display memory

Enter a 32-bit signed integer: -42

-42
FFFFFFD6
1111 1111 1111 1111 1111 1111 1101 0110

Enter a 32-bit signed integer: 36

+36
00000024
0000 0000 0000 0000 0000 0000 0010 0100

Enter a 32-bit signed integer: 244324

+244324
0003BA64
0000 0000 0000 0011 1011 1010 0110 0100

Enter a 32-bit signed integer: -7979779

-7979779
FF863CFD
1111 1111 1000 0110 0011 1100 1111 1101

10

; Ask the user to input a sequence of signed integers

call Crlf ; new line
 mov ecx,COUNT

L1: mov edx,OFFSET prompt
 call WriteString
 call ReadInt ; input integer into EAX
 call Crlf ; new line

; Display the integer in decimal, hexadecimal, and binary

call WriteInt ; display in signed decimal
call Crlf
call WriteHex ; display in hexadecimal
call Crlf
call WriteBin ; display in binary
call Crlf
call Crlf
Loop L1 ; repeat the loop

; Return the console window to default colors

call WaitMsg ; "Press any key..."
mov eax,DefaultColor
call SetTextColor
call Clrscr

exit
main ENDP
END main

Library Test #2: Random Integers
Let’s look at a second library test program that demonstrates random-number-generation capa-
bilities of the link library, and introduces the CALL instruction (to be covered fully in Section
5.5). First, it randomly generates 10 unsigned integers in the range 0 to 4,294,967,294. Next, it
generates 10 signed integers in the range �50 to �49:

; Link Library Test #2 (TestLib2.asm)

; Testing the Irvine32 Library procedures.

include Irvine32.inc

TAB = 9 ; ASCII code for Tab

.code
main PROC

call Randomize ; init random generator
call Rand1
call Rand2
exit

main ENDP

Rand1 PROC
; Generate ten pseudo-random integers.

mov ecx,10 ; loop 10 times

L1: call Random32 ; generate random int

11

call WriteDec ; write in unsigned decimal
mov al,TAB ; horizontal tab
call WriteChar ; write the tab
loop L1

call Crlf
ret

Rand1 ENDP

Rand2 PROC
; Generate ten pseudo-random integers from -50 to +49

mov ecx,10 ; loop 10 times

L1: mov eax,100 ; values 0-99
call RandomRange ; generate random int
sub eax,50 ; values -50 to +49
call WriteInt ; write signed decimal
mov al,TAB ; horizontal tab
call WriteChar ; write the tab
loop L1

call Crlf
ret

Rand2 ENDP
END main

Here is sample output from the program:

Library Test #3: Performance Timing
Assembly language is often used to optimize sections of code seen as critical to a program’s per-
formance. The GetMseconds procedure from the book’s library returns the number of millisec-
onds elapsed since midnight. In our third library test program, we call GetMseconds, execute a
nested loop, and call GetMSeconds a second time. The difference between the two values
returned by these procedure calls gives us the elapsed time of the nested loop:

; Link Library Test #3 (TestLib3.asm)

; Calculate the elapsed execution time of a nested loop

include Irvine32.inc

.data
OUTER_LOOP_COUNT = 3
startTime DWORD ?
msg1 byte "Please wait...",0dh,0ah,0
msg2 byte "Elapsed milliseconds: ",0

.code

3221236194 2210931702 974700167 367494257 2227888607

926772240 506254858 1769123448 2288603673 736071794

-34 +27 +38 -34 +31 -13 -29 +44 -48 -43

12

main PROC
mov edx,OFFSET msg1 ; "Please wait..."
call WriteString

; Save the starting time

call GetMSeconds
mov startTime,eax

; Start the outer loop

mov ecx,OUTER_LOOP_COUNT

L1: call innerLoop
loop L1

; Calculate the elapsed time

call GetMSeconds
sub eax,startTime

; Display the elapsed time

mov edx,OFFSET msg2 ; "Elapsed milliseconds: "
call WriteString
call WriteDec ; write the milliseconds
call Crlf

exit
main ENDP

innerLoop PROC
push ecx ; save current ECX value

mov ecx,0FFFFFFFh ; set the loop counter
L1: mul eax ; use up some cycles

mul eax
mul eax
loop L1 ; repeat the inner loop

pop ecx ; restore ECX's saved value
ret

innerLoop ENDP

END main

Here is sample output from the program running on an Intel Core Duo processor:

Detailed Analysis of the Program
Let us study Library Test #3 in greater detail. The main procedure displays the string “Please
wait…” in the console window:

main PROC
mov edx,OFFSET msg1 ; "Please wait..."
call WriteString

Please wait....

Elapsed milliseconds: 4974

13

When GetMSeconds is called, it returns the number of milliseconds that have elapsed since mid-
night into the EAX register. This value is saved in a variable for later use:

call GetMSeconds
mov startTime,eax

Next, we create a loop that executes based on the value of the OUTER_LOOP_COUNT con-
stant. That value is moved to ECX for use later in the LOOP instruction:

mov ecx,OUTER_LOOP_COUNT

The loop begins with label L1, where the innerLoop procedure is called. This CALL instruction
repeats until ECX is decremented down to zero:

L1: call innerLoop
loop L1

The innerLoop procedure uses an instruction named PUSH to save ECX on the stack before set-
ting it to a new value. (We will discuss PUSH and POP in the upcoming Section 5.4.) Then, the
loop itself has a few instructions designed to use up clock cycles:

innerLoop PROC
push ecx ; save current ECX value

mov ecx,0FFFFFFFh ; set the loop counter
L1: mul eax ; use up some cycles

mul eax
mul eax
loop L1 ; repeat the inner loop

The LOOP instruction will have decremented ECX down to zero at this point, so we pop the saved
value of ECX off the stack. It will now have the same value on leaving this procedure that it had when
entering. The PUSH and POP sequence is necessary because the main procedure was using ECX as
a loop counter when it called the innerLoop procedure. Here are the last few lines of innerLoop:

pop ecx ; restore ECX's saved value
ret

innerLoop ENDP

Back in the main procedure, after the loop finishes, we call GetMSeconds, which returns its
result in EAX. All we have to do is subtract the starting time from this value to get the number of
milliseconds that elapsed between the two calls to GetMSeconds:

call GetMSeconds
sub eax,startTime

The program displays a new string message, and then displays the integer in EAX that repre-
sents the number of elapsed milliseconds:

mov edx,OFFSET msg2 ; "Elapsed milliseconds: "
call WriteString
call WriteDec ; display the value in EAX
call Crlf
exit

main ENDP

