
1

5.3 Linking to an External Library
5.3.1 Background Information

5.4 The Irvine32 Library
5.4.1 Motivation for Creating the Library
5.4.2 Overview
5.4.3 Individual Procedure Descriptions

Lecture No.12

Lecture Outlines

5.3 Linking to an External Library
If you spend the time, you can write detailed code for input–output in assembly language. It’s a
lot like building your own automobile from scratch so that you can drive somewhere. The work
is both interesting and time consuming. In Chapter 11 you will get a chance to see how input–
output is handled in MS-Windows protected mode. It is great fun, and a new world opens up
when you see the available tools. For now, however, input–output should be easy while you are
learning assembly language basics. Section 5.3 shows how to call procedures from the book’s
link libraries, named Irvine32.lib and Irvine64.obj. The complete library source code is available
at the author’s web site (asmirvine.com). It should be installed on your computer in the
Examples\Lib32 subfolder of the book’s install file (usually named C:\Irvine).

The Irvine32 library can only be used by programs running in 32-bit mode. It contains pro-
cedures that link to the MS-Windows API when they generate input–output. The Irvine64
library is a more limited library for 64-bit applications that is limited to essential display and
string operations.

2

5.3.1 Background Information
A link library is a file containing procedures (subroutines) that have been assembled into
machine code. A link library begins as one or more source files, which are assembled into object
files. The object files are inserted into a specially formatted file recognized by the linker utility.
Suppose a program displays a string in the console window by calling a procedure named
WriteString. The program source must contain a PROTO directive identifying the WriteString
procedure:

WriteString proto

Next, a CALL instruction executes WriteString:

call WriteString

When the program is assembled, the assembler leaves the target address of the CALL instruc-
tion blank, knowing that it will be filled in by the linker. The linker looks for WriteString in the
link library and copies the appropriate machine instructions from the library into the program’s
executable file. In addition, it inserts WriteString’s address into the CALL instruction. If a pro-
cedure you’re calling is not in the link library, the linker issues an error message and does not
generate an executable file.

Linker Command Options The linker utility combines a program’s object file with one or
more object files and link libraries. The following command, for example, links hello.obj to the
irvine32.lib and kernel32.lib libraries:

link hello.obj irvine32.lib kernel32.lib

Linking 32-Bit Programs The kernel32.lib file, part of the Microsoft Windows Platform
Software Development Kit, contains linking information for system functions located in a file
named kernel32.dll. The latter is a fundamental part of MS-Windows, and is called a dynamic
link library. It contains executable functions that perform character-based input–output.
Figure 5-9 shows how kernel32.lib is a bridge to kernel32.dll.

Figure 5–9 Linking 32-bit programs.

In Chapters 1 through 10, our programs link either Irvine32.lib or Irvine64.obj. Chapter 11
shows how to link programs directly to kernel32.lib.

Your program

kernel32.lib

kernel32.dll

Irvine32.lib
links

to
links to

can link to

executes

3

5.4 The Irvine32 Library

5.4.1 Motivation for Creating the Library
There is no Microsoft-sanctioned standard library for assembly language programming. When
programmers first started writing assembly language for x86 processors in the early 1980s, MS-
DOS was the commonly used operating system. These 16-bit programs were able to call MS-
DOS functions (known as INT 21h services) to do simple input/output. Even at that time, if you
wanted to display an integer on the console, you had to write a fairly complicated procedure that
converted from the internal binary representation of integers to a sequence of ASCII characters
that would display the integer on the screen. We called it WriteInt, and this is the logic,
abstracted into pseudocode:

Initialization:

let n equal the binary value
let buffer be an array of char[size]

Algorithm:

i = size -1 ; last position of buffer
repeat

r = n mod 10 ; remainder
n = n / 10 ; integer division
digit = r OR 30h ; conver r to ASCII digit
buffer[i--] = digit ; store in buffer

until n = 0

if n is negative
buffer[i] = "-" ; insert a negative sign

while i > 0
print buffer[i]
i++

Notice that the digits are generated in reverse order and inserted into a buffer, moving from the
back to the front. Then the digits are written to the console in forward order. While this code is
easy enough to implement in C/C++, it requires some advanced skills in assembly language.

Professional programmers often prefer to build their own libraries, and doing so is an
excellent educational experience. In 32-bit mode running under Windows, an input–output
library must make calls directly into the operating system. The learning curve is rather
steep, and it presents some challenges for beginning programmers. Therefore, the Irvine32

4

library is designed to provide a simple interface for input–output for beginners. As you con-
tinue through the chapters in this book, you will acquire the knowledge and skills to create
your own library. You are free to modify and reuse the library, as long as you give credit to
its original author. Another alternative, which we will discuss in Chapter 13, is to call Stan-
dard C library functions from your assembly language programs. Again, that requires some
additional background.

Table 5-1 contains a complete list of procedures in the Irvine32 library.

Table 5-1 Procedures in the Irvine32 Library.

Procedure Description

CloseFile Closes a disk file that was previously opened.

Clrscr Clears the console window and locates the cursor at the upper left corner.

CreateOutputFile Creates a new disk file for writing in output mode.

Crlf Writes an end-of-line sequence to the console window.

Delay Pauses the program execution for a specified n-millisecond interval.

DumpMem Writes a block of memory to the console window in hexadecimal.

DumpRegs Displays the EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, EFLAGS, and EIP registers
in hexadecimal. Also displays the most common CPU status flags.

GetCommandTail Copies the program’s command-line arguments (called the command tail) into an array
of bytes.

GetDateTime Gets the current date and time from the system.

GetMaxXY Gets the number of columns and rows in the console window’s buffer.

GetMseconds Returns the number of milliseconds elapsed since midnight.

GetTextColor Returns the active foreground and background text colors in the console window.

Gotoxy Locates the cursor at a specific row and column in the console window.

IsDigit Sets the Zero flag if the AL register contains the ASCII code for a decimal digit (0–9).

MsgBox Displays a popup message box.

MsgBoxAsk Display a yes/no question in a popup message box.

OpenInputFile Opens an existing disk file for input.

ParseDecimal32 Converts an unsigned decimal integer string to 32-bit binary.

ParseInteger32 Converts a signed decimal integer string to 32-bit binary.

Random32 Generates a 32-bit pseudorandom integer in the range 0 to FFFFFFFFh.

Randomize Seeds the random number generator with a unique value.

RandomRange Generates a pseudorandom integer within a specified range.

ReadChar Waits for a single character to be typed at the keyboard and returns the character.

ReadDec Reads an unsigned 32-bit decimal integer from the keyboard, terminated by the Enter key.

ReadFromFile Reads an input disk file into a buffer.

ReadHex Reads a 32-bit hexadecimal integer from the keyboard, terminated by the Enter key.

5

5.4.2 Overview

Console Window The console window (or command window) is a text-only window created
by MS-Windows when a command prompt is displayed.

To display a console window in Microsoft Windows, click the Start button on the desktop, type
cmd into the Start Search field, and press Enter. Once a console window is open, you can resize the
console window buffer by right-clicking on the system menu in the window’s upper-left corner,
selecting Properties from the popup menu, and then modifying the values, as shown in Fig. 5-10.

You can also select various font sizes and colors. The console window defaults to 25 rows by
80 columns. You can use the mode command to change the number of columns and lines. The
following, typed at the command prompt, sets the console window to 40 columns by 30 lines:

mode con cols=40 lines=30

ReadInt Reads a 32-bit signed decimal integer from the keyboard, terminated by the Enter key.

ReadKey Reads a character from the keyboard’s input buffer without waiting for input.

ReadString Reads a string from the keyboard, terminated by the Enter key.

SetTextColor Sets the foreground and background colors of all subsequent text output to the console.

Str_compare Compares two strings.

Str_copy Copies a source string to a destination string.

Str_length Returns the length of a string in EAX.

Str_trim Removes unwanted characters from a string.

Str_ucase Converts a string to uppercase letters.

WaitMsg Displays a message and waits for a key to be pressed.

WriteBin Writes an unsigned 32-bit integer to the console window in ASCII binary format.

WriteBinB Writes a binary integer to the console window in byte, word, or doubleword format.

WriteChar Writes a single character to the console window.

WriteDec Writes an unsigned 32-bit integer to the console window in decimal format.

WriteHex Writes a 32-bit integer to the console window in hexadecimal format.

WriteHexB Writes a byte, word, or doubleword integer to the console window in hexadecimal
format.

WriteInt Writes a signed 32-bit integer to the console window in decimal format.

WriteStackFrame Writes the current procedure’s stack frame to the console.

WriteStackFrameName Writes the current procedure’s name and stack frame to the console.

WriteString Writes a null-terminated string to the console window.

WriteToFile Writes a buffer to an output file.

WriteWindowsMsg Displays a string containing the most recent error generated by MS-Windows.

Procedure Description

Table 5-1 (Continued)

6

Figure 5–10 Modifying the console window properties.

A file handle is a 32-bit integer used by the Windows operating system to identify a file that is
currently open. When your program calls a Windows service to open or create a file, the operat-
ing system creates a new file handle and makes it available to your program. Each time you call
an OS service method to read from or write to the file, you must pass the same file handle as a
parameter to the service method.

Note: If your program calls procedures in the Irvine32 library, you must always push 32-bit
values onto the runtime stack; if you do not, the Win32 Console functions called by the library
will not work correctly.

5.4.3 Individual Procedure Descriptions
In this section, we describe how each of the procedures in the Irvine32 library is used. We will
omit a few of the more advanced procedures, which will be explained in later chapters.

CloseFile The CloseFile procedure closes a file that was previously created or opened (see
CreateOutputFile and OpenInputFile). The file is identified by a 32-bit integer handle, which is
passed in EAX. If the file is closed successfully, the value returned in EAX will be nonzero.
Sample call:

mov eax,fileHandle
call CloseFile

7

Clrscr The Clrscr procedure clears the console window. This procedure is typically called at
the beginning and end of a program. If you call it at other times, you may need to pause the pro-
gram by first calling WaitMsg. Doing this allows the user to view information already on the
screen before it is erased. Sample call:

call WaitMsg ; "Press any key..."
call Clrscr

CreateOutputFile The CreateOutputFile procedure creates a new disk file and opens it for writ-
ing. When you call the procedure, place the offset of a filename in EDX. When the procedure
returns, EAX will contain a valid file handle (32-bit integer) if the file was created successfully.
Otherwise, EAX equals INVALID_HANDLE_VALUE (a predefined constant). Sample call:

.data
filename BYTE "newfile.txt",0
.code
mov edx,OFFSET filename
call CreateOutputFile

The following pseudocode describes the possible outcomes after calling CreateOutputFile:

if EAX = INVALID_HANDLE_VALUE
the file was not created successfully

else
EAX = handle for the open file

endif

Crlf The Crlf procedure advances the cursor to the beginning of the next line in the console
window. It writes a string containing the ASCII character codes 0Dh and 0Ah. Sample call:

call Crlf

Delay The Delay procedure pauses the program for a specified number of milliseconds.
Before calling Delay, set EAX to the desired interval. Sample call:

mov eax,1000 ; 1 second
call Delay

DumpMem The DumpMem procedure writes a range of memory to the console window in hexa-
decimal. Pass it the starting address in ESI, the number of units in ECX, and the unit size in EBX
(1 � byte, 2 � word, 4 � doubleword). The following sample call displays an array of 11 doublewords
in hexadecimal:

.data
array DWORD 1,2,3,4,5,6,7,8,9,0Ah,0Bh
.code
main PROC

mov esi,OFFSET array ; starting OFFSET
mov ecx,LENGTHOF array ; number of units
mov ebx,TYPE array ; doubleword format
call DumpMem

8

The following output is produced:

00000001 00000002 00000003 00000004 00000005 00000006
00000007 00000008 00000009 0000000A 0000000B

DumpRegs The DumpRegs procedure displays the EAX, EBX, ECX, EDX, ESI, EDI, EBP,
ESP, EIP, and EFL (EFLAGS) registers in hexadecimal. It also displays the values of the Carry,
Sign, Zero, Overflow, Auxiliary Carry, and Parity flags. Sample call:

call DumpRegs

Sample output:

EAX=00000613 EBX=00000000 ECX=000000FF EDX=00000000
ESI=00000000 EDI=00000100 EBP=0000091E ESP=000000F6
EIP=00401026 EFL=00000286 CF=0 SF=1 ZF=0 OF=0 AF=0 PF=1

The displayed value of EIP is the offset of the instruction following the call to DumpRegs.
DumpRegs can be useful when debugging programs because it displays a snapshot of the CPU.
It has no input parameters and no return value.

GetCommandTail The GetCommandTail procedure copies the program’s command line into
a null-terminated string. If the command line was found to be empty, the Carry flag is set; other-
wise, the Carry flag is cleared. This procedure is useful because it permits the user of a program
to pass parameters on the command line. Suppose a program named Encrypt.exe reads an input
file named file1.txt and produces an output file named file2.txt. The user can pass both filenames
on the command line when running the program:

Encrypt file1.txt file2.txt

When it starts up, the Encrypt program can call GetCommandTail and retrieve the two file-
names. When calling GetCommandTail, EDX must contain the offset of an array of at least 129
bytes. Sample call:

.data
cmdTail BYTE 129 DUP(0) ; empty buffer
.code
mov edx,OFFSET cmdTail
call GetCommandTail ; fills the buffer

There is a way to pass command-line arguments when running an application in Visual Studio.
From the Project menu, select <projectname> Properties. In the Property Pages window,
expand the entry under Configuration Properties, and select Debugging. Then enter your com-
mand arguments into the edit line on the right panel named Command Arguments.

GetMaxXY The GetMaxXY procedure gets the size of the console window’s buffer. If the con-
sole window buffer is larger than the visible window size, scroll bars appear automatically.
GetMaxXY has no input parameters. When it returns, the DX register contains the number of
buffer columns and AX contains the number of buffer rows. The possible range of each value can
be no greater than 255, which may be smaller than the actual window buffer size. Sample call:

9

.data
rows BYTE ?
cols BYTE ?
.code
call GetMaxXY
mov rows,al
mov cols,dl

GetMseconds The GetMseconds procedure gets the number of milliseconds elapsed since
midnight on the host computer, and returns the value in the EAX register. The procedure is a
great tool for measuring the time between events. No input parameters are required. The follow-
ing example calls GetMseconds, storing its return value. After the loop executes, the code call
GetMseconds a second time and subtract the two time values. The difference is the approximate
execution time of the loop:

.data
startTime DWORD ?
.code
call GetMseconds
mov startTime,eax
L1:
; (loop body)
loop L1

call GetMseconds
sub eax,startTime ; EAX = loop time, in milliseconds

GetTextColor The GetTextColor procedure gets the current foreground and background
colors of the console window. It has no input parameters. It returns the background color in the
upper four bits of AL and the foreground color in the lower four bits. Sample call:

.data
color byte ?
.code
call GetTextColor
mov color,AL

Gotoxy The Gotoxy procedure locates the cursor at a given row and column in the console win-
dow. By default, the console window’s X-coordinate range is 0 to 79 and the Y-coordinate range is
0 to 24. When you call Gotoxy, pass the Y-coordinate (row) in DH and the X-coordinate (column)
in DL. Sample call:

mov dh,10 ; row 10
mov dl,20 ; column 20
call Gotoxy ; locate cursor

The user may have resized the console window, so you can call GetMaxXY to find out the cur-
rent number of rows and columns.

10

IsDigit The IsDigit procedure determines whether the value in AL is the ASCII code for
a valid decimal digit. When calling it, pass an ASCII character in AL. The procedure sets
the Zero flag if AL contains a valid decimal digit; otherwise, it clears Zero flag. Sample
call:

mov AL,somechar
call IsDigit

MsgBox The MsgBox procedure displays a graphical popup message box with an optional
caption. (This works when the program is running in a console window.) Pass it the offset of a
string in EDX, which will appear inside the box. Optionally, pass the offset of a string for the
box’s title in EBX. To leave the title blank, set EBX to zero. Sample call:

.data
caption BYTE "Dialog Title", 0
HelloMsg BYTE "This is a pop-up message box.", 0dh,0ah

 BYTE "Click OK to continue...", 0
.code
mov ebx,OFFSET caption
mov edx,OFFSET HelloMsg
call MsgBox

Sample output:

MsgBoxAsk The MsgBoxAsk procedure displays a graphical popup message box with Yes
and No buttons. (This works when the program is running in a console window.) Pass it the
offset of a question string in EDX, which will appear inside the box. Optionally, pass the off-
set of a string for the box’s title in EBX. To leave the title blank, set EBX to zero. MsgBoxAsk
returns an integer in EAX that tells you which button was selected by the user. The value will be
one of two predefined Windows constants: IDYES (equal to 6) or IDNO (equal to 7). Sample
call:

.data
caption BYTE "Survey Completed",0
question BYTE "Thank you for completing the survey."
 BYTE 0dh,0ah
 BYTE "Would you like to receive the results?",0
.code
mov ebx,OFFSET caption
mov edx,OFFSET question
call MsgBoxAsk
;(check return value in EAX)

11

Sample output:

OpenInputFile The OpenInputFile procedure opens an existing file for input. Pass it the off-
set of a filename in EDX. When it returns, if the file was opened successfully, EAX will contain
a valid file handle. Otherwise, EAX will equal INVALID_HANDLE_VALUE (a predefined
constant).Sample call:

.data
filename BYTE "myfile.txt",0
.code
mov edx,OFFSET filename
call OpenInputFile

The following pseudocode describes the possible outcomes after calling OpenInputFile:

if EAX = INVALID_HANDLE_VALUE
the file was not opened successfully

else
EAX = handle for the open file

endif

ParseDecimal32 The ParseDecimal32 procedure converts an unsigned decimal integer string
to 32-bit binary. All valid digits occurring before a nonnumeric character are converted. Leading
spaces are ignored. Pass it the offset of a string in EDX and the string’s length in ECX. The
binary value is returned in EAX. Sample call:

.data
buffer BYTE "8193"
bufSize = ($ - buffer)
.code
mov edx,OFFSET buffer
mov ecx,bufSize
call ParseDecimal32 ; returns EAX

• If the integer is blank, EAX = 0 and CF = 1
• If the integer contains only spaces, EAX = 0 and CF = 1
• If the integer is larger than 232�1, EAX = 0 and CF = 1
• Otherwise, EAX contains the converted integer and CF = 0

See the description of the ReadDec procedure for details about how the Carry flag is affected.

ParseInteger32 The ParseInteger32 procedure converts a signed decimal integer string to
32-bit binary. All valid digits from the beginning of the string to the first nonnumeric character
are converted. Leading spaces are ignored. Pass it the offset of a string in EDX and the string’s
length in ECX. The binary value is returned in EAX. Sample call:

12

.data
buffer byte "-8193"
bufSize = ($ - buffer)
.code
mov edx,OFFSET buffer
mov ecx,bufSize
call ParseInteger32 ; returns EAX

The string may contain an optional leading plus or minus sign, followed only by decimal dig-
its. The Overflow flag is set and an error message is displayed on the console if the value cannot
be represented as a 32-bit signed integer (range: �2,147,483,648 to �2,147,483,647).

Random32 The Random32 procedure generates and returns a 32-bit random integer in EAX.
When called repeatedly, Random32 generates a simulated random sequence. The numbers are
created using a simple function having an input called a seed. The function uses the seed in a
formula that generates the random value. Subsequent random values are generated using each
previously generated random value as their seeds. The following code snippet shows a sample
call to Random32:

.data
randVal DWORD ?
.code
call Random32
mov randVal,eax

Randomize The Randomize procedure initializes the starting seed value of the Random32 and
RandomRange procedures. The seed equals the time of day, accurate to 1/100 of a second. Each
time you run a program that calls Random32 and RandomRange, the generated sequence of
random numbers will be unique. You need only to call Randomize once at the beginning of a pro-
gram. The following example produces 10 random integers:

call Randomize
mov ecx,10

L1: call Random32

 ; use or display random value in EAX here...

loop L1

RandomRange The RandomRange procedure produces a random integer within the range of
0 to n � 1, where n is an input parameter passed in the EAX register. The random integer is
returned in EAX. The following example generates a single random integer between 0 and 4999
and places it in a variable named randVal.

.data
randVal DWORD ?

.code
mov eax,5000
call RandomRange
mov randVal,eax

