
1

6–6

6–7

6–8

6–9

Encoders

Code Converters

Multiplexers (Data Selectors)

Demultiplexers

6–10 Parity Generators/Checkers

LECTURE OUTLINE

Lecture No.12

6–6 Encoders

An encoder is a combinational logic circuit that essentially performs a “reverse” decoder

function. An encoder accepts an active level on one of its inputs representing a digit, such

as a decimal or octal digit, and converts it to a coded output, such as BCD or binary. Encod-

ers can also be devised to encode various symbols and alphabetic characters. The process

of converting from familiar symbols or numbers to a coded format is called encoding.

The Decimal-to-BCD Encoder

This type of encoder has ten inputs—one for each decimal digit—and four outputs corre-

sponding to the BCD code, as shown in Figure 6–36. This is a basic 10-line-to-4-line encoder.

DEC/BCD

0

1

2

3

4

5

6

7

9

1

2

4

8

Decimal
input

BCD
output

8

FIGURE 6–36 Logic symbol for a decimal-to-BCD encoder.

The BCD (8421) code is listed in Table 6–6. From this table you can determine the

relationship between each BCD bit and the decimal digits in order to analyze the logic. For

instance, the most significant bit of the BCD code, A3, is always a 1 for decimal digit 8 or

9. An OR expression for bit A3 in terms of the decimal digits can therefore be written as

A3 = 8 + 9

2

Bit A2 is always a 1 for decimal digit 4, 5, 6 or 7 and can be expressed as an OR function

as follows:

A2 = 4 + 5 + 6 + 7

Bit A1 is always a 1 for decimal digit 2, 3, 6, or 7 and can be expressed as

A1 = 2 + 3 + 6 + 7

Finally, A0 is always a 1 for decimal digit 1, 3, 5, 7, or 9. The expression for A0 is

A0 = 1 + 3 + 5 + 7 + 9

Now let’s implement the logic circuitry required for encoding each decimal digit to a

BCD code by using the logic expressions just developed. It is simply a matter of ORing

the appropriate decimal digit input lines to form each BCD output. The basic encoder logic

resulting from these expressions is shown in Figure 6–37.

Decimal Digit

BCD Code

A3 A2 A1 A0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

TABLE 6–6

A0

1
(LSB)

A1

A2

A3 (MSB)

2

3

4
5
6
7

8

9

FIGURE 6–37 Basic logic diagram of a decimal-to-BCD encoder. A 0-digit input is

not needed because the BCD outputs are all LOW when there are no HIGH inputs.

The basic operation of the circuit in Figure 6–37 is as follows: When a HIGH appears

on one of the decimal digit input lines, the appropriate levels occur on the four BCD output

lines. For instance, if input line 9 is HIGH (assuming all other input lines are LOW), this

condition will produce a HIGH on outputs A0 and A3 and LOWs on outputs A1 and A2,

which is the BCD code (1001) for decimal 9.

The Decimal-to-BCD Priority Encoder

This type of encoder performs the same basic encoding function as previously discussed.

A priority encoder also offers additional flexibility in that it can be used in applications

that require priority detection. The priority function means that the encoder will produce a

BCD output corresponding to the highest-order decimal digit input that is active and will

ignore any other lower-order active inputs. For instance, if the 6 and the 3 inputs are both

active, the BCD output is 0110 (which represents decimal 6).

3

An Application

The ten decimal digits on a numeric keypad must be encoded for processing by the logic

circuitry. In this example, when one of the keys is pressed, the decimal digit is encoded to

the corresponding BCD code. Figure 6–39 shows a simple keyboard encoder arrangement

using a priority encoder. The keys are represented by ten push-button switches, each with a

pull-up resistor to +V. The pull-up resistor ensures that the line is HIGH when a key is not

depressed. When a key is depressed, the line is connected to ground, and a LOW is applied

to the corresponding encoder input. The zero key is not connected because the BCD output

represents zero when none of the other keys is depressed.

The BCD complement output of the encoder goes into a storage device, and each suc-

cessive BCD code is stored until the entire number has been entered. Methods of storing

BCD numbers and binary data are covered in Chapter 11.

HPRI/BCD

1
2
3
4
5
6
7
8
9

1
2
4
8

A0

A1

A2

A3

987

+V

65

321

0

All BCD complement lines are HIGH indicating a 0.

No encoding is necessary; however, this line may be
connected to other circuits that detect the key press.

BCD complement

4

R7 R8 R9

R4 R5 R6

R1 R2 R3

R0

Priority encoder

FIGURE 6–39 A simplified keyboard encoder.

SECTION 6–6 CHECKUP

1. Suppose the HIGH levels are applied to the 2 input and the 9 input of the circuit in

Figure 6–37.

(a) What are the states of the output lines?

(b) Does this represent a valid BCD code?

(c) What is the restriction on the encoder logic in Figure 6–37?

2. (a) What is the A3 A2 A1 A0 output when LOWs are applied to pins 1 and 5 of the
74HC147 in Figure 6–38?

(b) What does this output represent?

4

6–7 Code Converters

In this section, we will examine some methods of using combinational logic circuits to

convert from one code to another.

BCD-to-Binary Conversion

One method of BCD-to-binary code conversion uses adder circuits. The basic conversion

process is as follows:

1. The value, or weight, of each bit in the BCD number is represented by a binary

number.

2. All of the binary representations of the weights of bits that are 1s in the BCD number

are added.

3. The result of this addition is the binary equivalent of the BCD number.

A more concise statement of this operation is

The binary numbers representing the weights of the BCD bits are summed to produce

the total binary number.

Let’s examine an 8-bit BCD code (one that represents a 2-digit decimal number) to

understand the relationship between BCD and binary. For instance, you already know that

the decimal number 87 can be expressed in BCD as

1000 0111
()* ()*

8 7

The left-most 4-bit group represents 80, and the right-most 4-bit group represents 7. That

is, the left-most group has a weight of 10, and the right-most group has a weight of 1.

Within each group, the binary weight of each bit is as follows:

Tens Digit Units Digit

Weight: 80 40 20 10 8 4 2 1

Bit designation: B3 B2 B1 B0 A3 A2 A1 A0

The binary equivalent of each BCD bit is a binary number representing the weight of

that bit within the total BCD number. This representation is given in Table 6–7.

TABLE 6–7

Binary representations of BCD bit weights.

BCD Bit BCD Weight

(MSB) Binary Representation (LSB)

64 32 16 8 4 2 1

A0 1 0 0 0 0 0 0 1

A1 2 0 0 0 0 0 1 0

A2 4 0 0 0 0 1 0 0

A3 8 0 0 0 1 0 0 0

B0 10 0 0 0 1 0 1 0

B1 20 0 0 1 0 1 0 0

B2 40 0 1 0 1 0 0 0

B3 80 1 0 1 0 0 0 0

5

If the binary representations for the weights of all the 1s in the BCD number are added,

the result is the binary number that corresponds to the BCD number. Example 6–12 illus-

trates this.

EXAMPLE 6–12

Convert the BCD numbers 00100111 (decimal 27) and 10011000 (decimal 98) to

binary.

Solution

Write the binary representations of the weights of all 1s appearing in the numbers, and

then add them together.

80 40 20 10 8 4 2 1

0 0 1 0 0 1 1 1

0000001

0000010

0000100

+ 0010100

0011011

1

2

4

20

Binary number for decimal 27

80 40 20 10 8 4 2 1

1 0 0 1 1 0 0 0

0001000

0001010

+ 1010000

1100010

8

10

80

Binary number for decimal 98

Related Problem

Show the process of converting 01000001 in BCD to binary.

Open file EX06-12 and run the simulation to observe the operation of a

BCD-to-binary logic circuit.

Binary-to-Gray and Gray-to-Binary Conversion

The basic process for Gray-binary conversions was covered in Chapter 2. Exclusive-OR

gates can be used for these conversions. Programmable logic devices (PLDs) can also be

programmed for these code conversions. Figure 6–40 shows a 4-bit binary-to-Gray code

converter, and Figure 6–41 illustrates a 4-bit Gray-to-binary converter.

B0

B1

B2

B3

G0

G1

G2

G3

(LSB)

(MSB)

Binary Gray

FIGURE 6–40 Four-bit binary-to-

Gray conversion logic. Open file

F06-40 to verify operation.

6

EXAMPLE 6–13

(a) Convert the binary number 0101 to Gray code with exclusive-OR gates.

(b) Convert the Gray code 1011 to binary with exclusive-OR gates.

Solution

(a) 01012 is 0111 Gray. See Figure 6–42(a).

(b) 1011 Gray is 11012. See Figure 6–42(b).

(a)

1

0

1

0

1

1

1

0

Binary Gray

(b)

1

1

0

1

1

0

1

1

BinaryGray

FIGURE 6–42

Related Problem

How many exclusive-OR gates are required to convert 8-bit binary to Gray?

SECTION 6–7 CHECKUP

1. Convert the BCD number 10000101 to binary.

2. Draw the logic diagram for converting an 8-bit binary number to Gray code.

6–8 Multiplexers (Data Selectors)

A multiplexer (MUX) is a device that allows digital information from several sources to

be routed onto a single line for transmission over that line to a common destination. The

basic multiplexer has several data-input lines and a single output line. It also has data-select

inputs, which permit digital data on any one of the inputs to be switched to the output line.

Multiplexers are also known as data selectors.

A logic symbol for a 4-input multiplexer (MUX) is shown in Figure 6–43. Notice that

there are two data-select lines because with two select bits, any one of the four data-input

lines can be selected.

G0

G1

G2

G3

(LSB)

(MSB)

Gray

B0

B1

B2

B3

Binary

FIGURE 6–41 Four-bit Gray-to-

binary conversion logic. Open file

F06-41 to verify operation.

7

In Figure 6–43, a 2-bit code on the data-select (S) inputs will allow the data on the

selected data input to pass through to the data output. If a binary 0 (S1 = 0 and S0 = 0)

is applied to the data-select lines, the data on input D0 appear on the data-output line.

If a binary 1 (S1 = 0 and S0 = 1) is applied to the data-select lines, the data on input

D1 appear on the data output. If a binary 2 (S1 = 1 and S0 = 0) is applied, the data

on D2 appear on the output. If a binary 3 (S1 = 1 and S0 = 1) is applied, the data on

D3 are switched to the output line. A summary of this operation is given in Table 6–8.

Data
output

YD0

D1

D2

MUX

1

2

0

D3 3

S1

Data
select

Data
inputs

1

S0 0

FIGURE 6–43 Logic symbol for a 1-of-4 data selector/multiplexer.

TABLE 6–8

Data selection for a 1-of-4-multiplexer.

Data-Select Inputs

Input SelectedS1 S0

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Now let’s look at the logic circuitry required to perform this multiplexing operation. The

data output is equal to the state of the selected data input. You can therefore, derive a logic

expression for the output in terms of the data input and the select inputs.

The data output is equal to D0 only if S1 = 0 and S0 = 0: Y = D0S1S0.

The data output is equal to D1 only if S1 = 0 and S0 = 1: Y = D1S1S0.

The data output is equal to D2 only if S1 = 1 and S0 = 0: Y = D2S1S0.

The data output is equal to D3 only if S1 = 1 and S0 = 1: Y = D3S1S0.

When these terms are ORed, the total expression for the data output is

Y = D0S1S0 + D1S1S0 + D2S1S0 + D3S1S0

The implementation of this equation requires four 3-input AND gates, a 4-input OR gate,

and two inverters to generate the complements of S1 and S0, as shown in Figure 6–44.

Because data can be selected from any one of the input lines, this circuit is also referred to

as a data selector.

8

S0

S1

D0

D1

D2

D3

Y

S0

S1

FIGURE 6–44 Logic diagram for a 4-input multiplexer. Open file F06-44

to verify operation.

EXAMPLE 6–14

The data-input and data-select waveforms in Figure 6–45(a) are applied to the multi-

plexer in Figure 6–44. Determine the output waveform in relation to the inputs.

0

0

1

0

0

1

1

1

0

0

1

0

0

1

1

1

D0

(a)

(b)

D1

D2

D3

S0

S1

Y

D0 D1 D2 D3 D0 D1 D2 D3

FIGURE 6–45

Solution

The binary state of the data-select inputs during each interval determines which data

input is selected. Notice that the data-select inputs go through a repetitive binary

sequence 00, 01, 10, 11, 00, 01, 10, 11, and so on. The resulting output waveform is

shown in Figure 6–45(b).

Related Problem

Construct a timing diagram showing all inputs and the output if the S0 and S1 wave-

forms in Figure 6–45 are interchanged.

9

Figure 6–52 shows a 1-line-to-4-line demultiplexer (DEMUX) circuit. The data-input

line goes to all of the AND gates. The two data-select lines enable only one gate at a time,

and the data appearing on the data-input line will pass through the selected gate to the

associated data-output line.

S0

S1

D0

D1

D2

D3

Data
output
linesSelect

lines

Data
input

FIGURE 6–52 A 1-line-to-4-line demultiplexer.

EXAMPLE 6–18

The serial data-input waveform (Data in) and data-select inputs (S0 and S1) are shown in

Figure 6–53. Determine the data-output waveforms on D0 through D3 for the demulti-

plexer in Figure 6–52.

S0

S1

D0

D1

D2

D3

Data
in

1

1

0

0

10

11

FIGURE 6–53

Solution

Notice that the select lines go through a binary sequence so that each successive input

bit is routed to D0, D1, D2, and D3 in sequence, as shown by the output waveforms in

Figure 6–53.

Related Problem

Develop the timing diagram for the demultiplexer if the S0 and S1 waveforms are both

inverted.

6–9 Demultiplexers

A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes digital

information from one line and distributes it to a given number of output lines. For this rea-

son, the demultiplexer is also known as a data distributor. As you will learn, decoders can

also be used as demultiplexers.

10

SECTION 6–9 CHECKUP

1. Generally, how can a decoder be used as a demultiplexer?

2. The demultiplexer in Figure 6–54 has a binary code of 1010 on the data-select lines,

and the data-input line is LOW. What are the states of the output lines?

6–10 Parity Generators/Checkers

Errors can occur as digital codes are being transferred from one point to another within

a digital system or while codes are being transmitted from one system to another. The

errors take the form of undesired changes in the bits that make up the coded informa-

tion; that is, a 1 can change to a 0, or a 0 to a 1, because of component malfunctions or

electrical noise. In most digital systems, the probability that even a single bit error will

occur is very small, and the likelihood that more than one will occur is even smaller.

Nevertheless, when an error occurs undetected, it can cause serious problems in a digital

system.

The parity method of error detection in which a parity bit is attached to a group of

information bits in order to make the total number of 1s either even or odd (depending on

the system) was covered in Chapter 2. In addition to parity bits, several specific codes also

provide inherent error detection.

Basic Parity Logic

In order to check for or to generate the proper parity in a given code, a basic principle can

be used:

The sum (disregarding carries) of an even number of 1s is always 0, and the sum of

an odd number of 1s is always 1.

Therefore, to determine if a given code has even parity or odd parity, all the bits in that

code are summed. As you know, the modulo-2 sum of two bits can be generated by an

exclusive-OR gate, as shown in Figure 6–55(a); the modulo-2 sum of four bits can be

formed by three exclusive-OR gates connected as shown in Figure 6–55(b); and so on.

When the number of 1s on the inputs is even, the output X is 0 (LOW). When the number

of 1s is odd, the output X is 1 (HIGH).

X
A1

A0

A2

A3

(b) Summing of four bits

A0
X

A1

(a) Summing of two bits

FIGURE 6–55

