
5.1 Stack Operations
5.1.1 Runtime Stack (32-Bit Mode) 
5.1.2 PUSH and POP Instructions 

5.2 Defining and Using Procedures
5.2.1 PROC Directive
5.2.2 CALL and RET Instructions
5.2.3 Nested Procedure Calls
5.2.4 Passing Register Arguments to 

Procedures
5.2.5 Example: Summing an Integer Array 
5.2.6 Saving and Restoring Registers 

Lecture No.11 

Lecture Outlines



1

5.1 Stack Operations
If we place ten plates on each other as in the following diagram, the result can be called a stack.
While it might be possible to remove a dish from the middle of the stack, it is much more com-
mon to remove from the top. New plates can be added to the top of the stack, but never to the
bottom or middle (Fig. 5–1):

Figure 5–1 Stack of plates

A stack data structure follows the same principle as a stack of plates: New values are added to
the top of the stack, and existing values are removed from the top. Stacks in general are useful
structures for a variety of programming applications, and they can easily be implemented using
object-oriented programming methods. If you have taken a programming course that used data
structures, you have worked with the stack abstract data type. A stack is also called a LIFO struc-
ture (Last-In, First-Out) because the last value put into the stack is always the first value taken out.

In this chapter, we concentrate specifically on the runtime stack. It is supported directly by
hardware in the CPU, and it is an essential part of the mechanism for calling and returning from
procedures. Most of the time, we just call it the stack.

5.1.1 Runtime Stack (32-Bit Mode)
The runtime stack is a memory array managed directly by the CPU, using the ESP (extended
stack pointer) register, known as the stack pointer register. In 32-bit mode, ESP register holds a
32-bit offset into some location on the stack. We rarely manipulate ESP directly; instead, it is indi-
rectly modified by instructions such as CALL, RET, PUSH, and POP.

ESP always points to the last value to be added to, or pushed on, the top of stack. To demon-
strate, let’s begin with a stack containing one value. In Fig. 5-2, the ESP contains hexadecimal
00001000, the offset of the most recently pushed value (00000006). In our diagrams, the top of the
stack moves downward when the stack pointer decreases in value:

Figure 5–2 A stack containing a single value

1
2
3
4
5
6
7
8
9
10 Top

Bottom

00000006 ESP � 00001000h00001000

Offset

00000FF8

00000FF4

00000FF0

00000FFC



2

Each stack location in this figure contains 32 bits, which is the case when a program is running
in 32-bit mode.

Push Operation
A 32-bit push operation decrements the stack pointer by 4 and copies a value into the location in
the stack pointed to by the stack pointer. Figure 5-3 shows the effect of pushing 000000A5 on a
stack that already contains one value (00000006). Notice that the ESP register always points to
the last item pushed on the stack. The figure shows the stack ordering opposite to that of the
stack of plates we saw earlier, because the runtime stack grows downward in memory, from
higher addresses to lower addresses. Before the push, ESP � 00001000h; after the push, ESP �
00000FFCh. Figure 5-4 shows the same stack after pushing a total of four integers.

Figure 5–3 Pushing integers on the stack.

Figure 5–4 Stack, after pushing 00000001 and 00000002.

Pop Operation
A pop operation removes a value from the stack. After the value is popped from the stack, the
stack pointer is incremented (by the stack element size) to point to the next-highest location in the
stack. Figure 5-5 shows the stack before and after the value 00000002 is popped.

The runtime stack discussed here is not the same as the stack abstract data type (ADT) discussed in
data structures courses. The runtime stack works at the system level to handle subroutine calls. The
stack ADT is a programming construct typically written in a high-level programming language such
as C++ or Java. It is used when implementing algorithms that depend on last-in, first-out operations. 

00000006 00000006

ESP

00001000

00000FFC

00000FF8

00000FF4

00000FF0

000000A5

ESP00001000

Before

00000FFC

00000FF8

00000FF4

00000FF0

After

ESP

00001000

Offset

00000FFC

00000FF8

00000FF4

00000FF0

00000006

000000A5

00000001

00000002



3

Figure 5–5 Popping a value from the runtime stack.

The area of the stack below ESP is logically empty, and will be overwritten the next time the
current program executes any instruction that pushes a value on the stack.

Stack Applications
There are several important uses of runtime stacks in programs:

• A stack makes a convenient temporary save area for registers when they are used for
more than one purpose. After they are modified, they can be restored to their original
values.

• When the CALL instruction executes, the CPU saves the current subroutine’s return address
on the stack.

• When calling a subroutine, you pass input values called arguments by pushing them on the stack. 
• The stack provides temporary storage for local variables inside subroutines.

5.1.2 PUSH and POP Instructions

PUSH Instruction
The PUSH instruction first decrements ESP and then copies a source operand into the stack.
A 16-bit operand causes ESP to be decremented by 2. A 32-bit operand causes ESP to be decre-
mented by 4. There are three instruction formats:

PUSH reg/mem16
PUSH reg/mem32
PUSH imm32

POP Instruction
The POP instruction first copies the contents of the stack element pointed to by ESP into a 16- or
32-bit destination operand and then increments ESP. If the operand is 16 bits, ESP is incre-
mented by 2; if the operand is 32 bits, ESP is incremented by 4:

POP reg/mem16
POP reg/mem32

PUSHFD and POPFD Instructions
The PUSHFD instruction pushes the 32-bit EFLAGS register on the stack, and POPFD pops the
stack into EFLAGS:

pushfd
popfd

Before

00000006

000000A5

00000001

00000002 ESP

After

00000006

000000A5

00000001
ESP

00001000

00000FFC

00000FF8

00000FF4

00000FF0

00001000

00000FFC

00000FF8

00000FF4

00000FF0



4

The MOV instruction cannot be used to copy the flags to a variable, so PUSHFD may be the
best way to save the flags. There are times when it is useful to make a backup copy of the flags
so you can restore them to their former values later. Often, we enclose a block of code within
PUSHFD and POPFD:

pushfd ; save the flags
;
; any sequence of statements here...
;
popfd ; restore the flags

When using pushes and pops of this type, be sure the program’s execution path does not skip
over the POPFD instruction. When a program is modified over time, it can be tricky to remem-
ber where all the pushes and pops are located. The need for precise documentation is critical!

A less error-prone way to save and restore the flags is to push them on the stack and immedi-
ately pop them into a variable:

.data
saveFlags DWORD ?
.code
pushfd ; push flags on stack
pop  saveFlags ; copy into a variable

The following statements restore the flags from the same variable:

push saveFlags ; push saved flag values
popfd ; copy into the flags

PUSHAD, PUSHA, POPAD, and POPA
The PUSHAD instruction pushes all of the 32-bit general-purpose registers on the stack in the following
order: EAX, ECX, EDX, EBX, ESP (value before executing PUSHAD), EBP, ESI, and EDI. The
POPAD instruction pops the same registers off the stack in reverse order. Similarly, the PUSHA instruc-
tion, pushes the 16-bit general-purpose registers (AX, CX, DX, BX, SP, BP, SI, DI) on the stack in the
order listed. The POPA instruction pops the same registers in reverse. You should only use PUSHA and
POPA when programming in 16-bit mode. We cover 16-bit programming in Chapters 14–17. 

If you write a procedure that modifies a number of 32-bit registers, use PUSHAD at the
beginning of the procedure and POPAD at the end to save and restore the registers. The follow-
ing code fragment is an example:

MySub PROC
pushad ; save general-purpose registers
.
.
mov eax,...
mov edx,...
mov ecx,...
.
.
popad ; restore general-purpose registers
ret

MySub ENDP



5

An important exception to the foregoing example must be pointed out; procedures returning
results in one or more registers should not use PUSHA and PUSHAD. Suppose the following
ReadValue procedure returns an integer in EAX; the call to POPAD overwrites the return value
from EAX:

ReadValue PROC
pushad ; save general-purpose registers
.
.
mov eax,return_value
.
.
popad ; overwrites EAX!
ret

ReadValue ENDP

Example: Reversing a String
Let’s look at a program named RevStr that loops through a string and pushes each character on
the stack. It then pops the letters from the stack (in reverse order) and stores them back into
the same string variable. Because the stack is a LIFO (last-in, first-out) structure, the letters in
the string are reversed:

; Reversing a String (RevStr.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO,dwExitCode:DWORD

.data
aName BYTE "Abraham Lincoln",0
nameSize = ($ - aName) - 1

.code
main PROC
; Push the name on the stack.

mov ecx,nameSize
mov esi,0

L1: movzx eax,aName[esi] ; get character
push eax ; push on stack
inc esi
loop L1

; Pop the name from the stack, in reverse,
; and store in the aName array.

mov ecx,nameSize
mov esi,0

loop L2

L2: pop
mov

; get character
; store in string

inc

eax
aName[esi],al
esi



6

5.2 Defining and Using Procedures
If you’ve already studied a high-level programming language, you know how useful it can be to
divide programs into subroutines. A complicated problem is usually divided into separate tasks
before it can be understood, implemented, and tested effectively. In assembly language, we typi-
cally use the term procedure to mean a subroutine. In other languages, subroutines are called
methods or functions.

In terms of object-oriented programming, the functions or methods in a single class are
roughly equivalent to the collection of procedures and data encapsulated in an assembly lan-
guage module. Assembly language was created long before object-oriented programming, so it
doesn’t have the formal structure found in object-oriented languages. Assembly programmers
must impose their own formal structure on programs. 

5.2.1 PROC Directive

Defining a Procedure
Informally, we can define a procedure as a named block of statements that ends in a return state-
ment. A procedure is declared using the PROC and ENDP directives. It must be assigned a name (a
valid identifier). Each program we’ve written so far contains a procedure named main, for example,

main PROC
.
.
main ENDP

When you create a procedure other than your program’s startup procedure, end it with a RET
instruction. RET forces the CPU to return to the location from where the procedure was called:

sample PROC
.
.
ret

sample ENDP

Labels in Procedures
By default, labels are visible only within the procedure in which they are declared. This rule
often affects jump and loop instructions. In the following example, the label named Destination
must be located in the same procedure as the JMP instruction:

jmp Destination

INVOKE ExitProcess,0
main ENDP
END main

It is possible to work around this limitation by declaring a global label, identified by a double
colon (::) after its name:

Destination::

In terms of program design, it’s not a good idea to jump or loop outside of the current procedure. 
Procedures have an automated way of returning and adjusting the runtime stack. If you directly 
transfer out of a procedure, the runtime stack can easily become corrupted. For more informa-
tion about the runtime stack.



7

Example: SumOf Three Integers
Let’s create a procedure named SumOf that calculates the sum of three 32-bit integers. We will
assume that relevant integers are assigned to EAX, EBX, and ECX before the procedure is
called. The procedure returns the sum in EAX:

SumOf PROC
    add  eax,ebx
    add  eax,ecx
    ret
SumOf ENDP

Documenting Procedures
A good habit to cultivate is that of adding clear and readable documentation to your programs.
The following are a few suggestions for information that you can put at the beginning of each
procedure:

• A description of all tasks accomplished by the procedure.
• A list of input parameters and their usage, labeled by a word such as Receives. If any input

parameters have specific requirements for their input values, list them here.
• A description of any values returned by the procedure, labeled by a word such as Returns.
• A list of any special requirements, called preconditions, that must be satisfied before the pro-

cedure is called. These can be labeled by the word Requires. For example, for a procedure
that draws a graphics line, a useful precondition would be that the video display adapter must
already be in graphics mode.

With these ideas in mind, let’s add appropriate documentation to the SumOf procedure:

The descriptive labels we’ve chosen, such as Receives, Returns, and Requires, are not absolutes;
other useful names are often used. 

;---------------------------------------------------------
; sumof
;
; Calculates and returns the sum of three 32-bit integers.
; Receives: EAX, EBX, ECX, the three integers. May be 
;           signed or unsigned.
; Returns:  EAX = sum
---------------------------------------------------------
SumOf PROC

add eax,ebx
add eax,ecx
ret

SumOf ENDP

Functions written in high-level languages like C and C++ typically return 8-bit values in AL,
16-bit values in AX, and 32-bit values in EAX.



8

5.2.2 CALL and RET Instructions
The CALL instruction calls a procedure by directing the processor to begin execution at a new mem-
ory location. The procedure uses a RET (return from procedure) instruction to bring the processor
back to the point in the program where the procedure was called. Mechanically speaking, the CALL
instruction pushes its return address on the stack and copies the called procedure’s address into the
instruction pointer. When the procedure is ready to return, its RET instruction pops the return address
from the stack into the instruction pointer. In 32-bit mode, the CPU executes the instruction in mem-
ory pointed to by EIP (instruction pointer register). In 16-bit mode, IP points to the instruction. 

Call and Return Example
Suppose that in main, a CALL statement is located at offset 00000020. Typically, this instruc-
tion requires 5 bytes of machine code, so the next statement (a MOV in this case) is located at
offset 00000025:

main PROC
00000020     call MySub
00000025     mov  eax,ebx

Next, suppose that the first executable instruction in MySub is located at offset 00000040:

MySub PROC
00000040    mov eax,edx

.

.
ret

MySub ENDP

When the CALL instruction executes (Fig. 5-6), the address following the call (00000025) is
pushed on the stack and the address of MySub is loaded into EIP. All instructions in MySub
execute up to its RET instruction. When the RET instruction executes, the value in the stack

pointed to by ESP is popped into EIP (step 1 in Fig. 5-7). In step 2, ESP is incremented so it
points to the previous value on the stack (step 2). 

Figure 5–6 Executing a CALL instruction.

00000025

????

ESP

EIP

00000040

5.2.3 Nested Procedure Calls
A nested procedure call occurs when a called procedure calls another procedure before the first
procedure returns. Suppose that main  calls a procedure named Sub1. While Sub1 is executing,
it calls the Sub2 procedure. While Sub2 is executing, it calls the Sub3 procedure. The process is
shown in Fig. 5-8.



9

Figure 5–7 Executing the RET instruction.

When the RET instruction at the end of Sub3 executes, it pops the value at stack[ESP] into
the instruction pointer. This causes execution to resume at the instruction following the call Sub3
instruction. The following diagram shows the stack just before the return from Sub3 is executed:

ESP

EIP

Step 1:

Step 2:

0000002500000025

ESP ????

????

(ret to main)

(ret to Sub1)

(ret to Sub2)
ESP

After the return, ESP points to the next-highest stack entry. When the RET instruction at the
end of Sub2 is about to execute, the stack appears as follows:

(ret to main)

(ret to Sub1)
ESP

Finally, when Sub1 returns, stack[ESP] is popped into the instruction pointer, and execution
resumes in main:

(ret to main)
ESP



10

Figure 5–8 Nested procedure calls.

Clearly, the stack proves itself a useful device for remembering information, including nested
procedure calls. Stack structures, in general, are used in situations where programs must retrace
their steps in a specific order. 

main proc

   .

   .

   call Sub1

   exit

main endp

Sub1 proc

   .

   .

   call Sub2

   ret
Sub1 endp

Sub2 proc

   .

   .

   call Sub3

   ret
Sub2 endp

Sub3 proc

   .

   .

   ret
Sub3 endp

5.2.4 Passing Register Arguments to Procedures
If you write a procedure that performs some standard operation such as calculating the sum of an
integer array, it’s not a good idea to include references to specific variable names inside the pro-
cedure. If you did, the procedure could only be used with one array. A better approach is to pass
the offset of an array to the procedure and pass an integer specifying the number of array ele-
ments. We call these arguments (or input parameters). In assembly language, it is common to
pass arguments inside general-purpose registers. 

In the preceding section we created a simple procedure named SumOf that added the integers
in the EAX, EBX, and ECX registers. In main, before calling SumOf, we assign values to EAX,
EBX, and ECX:

.data
theSum  DWORD  ?
.code
main PROC



11

mov eax,10000h ; argument
mov ebx,20000h ; argument
mov ecx,30000h ; argument
call Sumof     ; EAX = (EAX + EBX + ECX)
mov theSum,eax ; save the sum

After the CALL statement, we have the option of copying the sum in EAX to a variable.

5.2.5 Example: Summing an Integer Array
A very common type of loop that you may have already coded in C++ or Java is one that calcu-
lates the sum of an integer array. This is very easy to implement in assembly language, and it can
be coded in such a way that it will run as fast as possible. For example, one can use registers
rather than variables inside a loop.

Let’s create a procedure named ArraySum that receives two parameters from a calling pro-
gram: a pointer to an array of 32-bit integers, and a count of the number of array values. It calcu-
lates and returns the sum of the array in EAX:

;-----------------------------------------------------
; ArraySum
;
; Calculates the sum of an array of 32-bit integers.
; Receives: ESI = the array offset
;           ECX = number of elements in the array
; Returns:  EAX = sum of the array elements
;-----------------------------------------------------
ArraySum PROC

push esi ; save ESI, ECX
push ecx
mov eax,0 ; set the sum to zero

L1: add eax,[esi] ; add each integer to sum
add esi,TYPE DWORD ; point to next integer

loop L1

pop ecx

; repeat for array size

; restore ECX, ESI
pop esi

; sum is in EAXret
ArraySum ENDP

Nothing in this procedure is specific to a certain array name or array size. It could be used in any
program that needs to sum an array of 32-bit integers. Whenever possible, you should also create
procedures that are flexible and adaptable.

Testing the ArraySum Procedure
The following program tests the ArraySum procedure by calling it and passing the offset and
length of an array of 32-bit integers. After calling ArraySum, it saves the procedure’s return
value in a variable named theSum.



12

; Testing the ArraySum procedure (TestArraySum.asm)

.386

.model flat, stdcall

.stack 4096
ExitProcess PROTO, dwExitCode:DWORD

.data
array DWORD 10000h,20000h,30000h,40000h,50000h
theSum DWORD ?

.code
main PROC

mov   esi,OFFSET array ; ESI points to array
mov   ecx,LENGTHOF array ; ECX = array count
call  ArraySum ; calculate the sum
mov   theSum,eax ; returned in EAX

INVOKE ExitProcess,0
main ENDP

;-----------------------------------------------------
; ArraySum 
; Calculates the sum of an array of 32-bit integers.
; Receives: ESI = the array offset
; ECX = number of elements in the array
; Returns: EAX = sum of the array elements
;-----------------------------------------------------

ArraySum PROC
push  esi ; save ESI, ECX
push  ecx
mov   eax,0 ; set the sum to zero

L1:
add   eax,[esi] ; add each integer to sum
add   esi,TYPE DWORD ; point to next integer
loop  L1 ; repeat for array size

   ecxpop ; restore ECX, ESI
   esipop

; sum is in EAXret 
ArraySum ENDP

END main

5.2.6 Saving and Restoring Registers
In the ArraySum example, ECX and ESI were pushed on the stack at the beginning of the pro-
cedure and popped at the end. This action is typical of most procedures that modify registers.
Always save and restore registers that are modified by a procedure so the calling program can be
sure that none of its own register values will be overwritten. The exception to this rule pertains to
registers used as return values, usually EAX. Do not push and pop them.



13

USES Operator
The USES operator, coupled with the PROC directive, lets you list the names of all registers
modified within a procedure. USES tells the assembler to do two things: First, generate PUSH
instructions that save the registers on the stack at the beginning of the procedure. Second,
generate POP instructions that restore the register values at the end of the procedure. The USES
operator immediately follows PROC, and is itself followed by a list of registers on the same line
separated by spaces or tabs (not commas).

The ArraySum procedure from Section 5.2.5 used PUSH and POP instructions to save and
restore ESI and ECX. The USES operator can more easily do the same:

ArraySum PROC USES esi ecx
mov eax,0 ; set the sum to zero

L1:
add eax,[esi] ; add each integer to sum
add esi,TYPE DWORD ; point to next integer
loop L1 ; repeat for array size

ret ; sum is in EAX
ArraySum ENDP

The corresponding code generated by the assembler shows the effect of USES:

ArraySum PROC
push esi
push ecx
mov eax,0 ; set the sum to zero

L1:
add eax,[esi] ; add each integer to sum
add esi,TYPE DWORD ; point to next integer
loop L1 ; repeat for array size

pop ecx
pop esi
ret

ArraySum ENDP

Exception There is an important exception to our standing rule about saving registers that
applies when a procedure returns a value in a register (usually EAX). In this case, the return reg-
ister should not be pushed and popped. For example, in the SumOf procedure in the following
example, it pushes and pops EAX, causing the procedure’s return value to be lost:

SumOf PROC
push eax
add eax,ebx

eax,ecx
eax

; sum of three integers
; save EAX
; calculate the sum
; of EAX, EBX, ECX
; lost the sum!

add
pop
ret

SumOf ENDP

Debugging Tip: When using the Microsoft Visual Studio debugger, you can view the hidden machine
instructions generated by MASM’s advanced operators and directives. Right-click in the Debugging
window and select Go to Disassembly. This window displays your program’s source code along with
hidden machine instructions generated by the assembler.




