
6–3 Ripple Carry and Look-Ahead Carry Adders

As mentioned in the last section, parallel adders can be placed into two categories based

on the way in which internal carries from stage to stage are handled. Those categories are

ripple carry and look-ahead carry. Externally, both types of adders are the same in terms of

inputs and outputs. The difference is the speed at which they can add numbers. The look-

ahead carry adder is much faster than the ripple carry adder.

The Ripple Carry Adder

A ripple carry adder is one in which the carry output of each full-adder is connected to

the carry input of the next higher-order stage (a stage is one full-adder). The sum and the

output carry of any stage cannot be produced until the input carry occurs; this causes a time

delay in the addition process, as illustrated in Figure 6–14. The carry propagation delay

for each full-adder is the time from the application of the input carry until the output carry

occurs, assuming that the A and B inputs are already present.

1

1

1

1

1

1

MSB

010111

A

Σ

BA

Σ

B Cin
Cin

Cout Cout

A

Σ

B Cin

Cout

01

1

A

Σ

B Cin

Cout

LSB

1
1

8 ns8 ns8 ns8 ns

FA1FA2FA3FA4

32 ns

FIGURE 6–14 A 4-bit parallel ripple carry adder showing “worst-case” carry propagation

delays.

Full-adder 1 (FA1) cannot produce a potential output carry until an input carry is

applied. Full-adder 2 (FA2) cannot produce a potential output carry until FA1 produces

an output carry. Full-adder 3 (FA3) cannot produce a potential output carry until an output

6–3

6–4

6–5

Ripple Carry and Look-Ahead Carry Adders

Comparators

Decoders

LECTURE OUTLINE

Lecture No.11

1

2

carry is produced by FA1 followed by an output carry from FA2, and so on. As you can

see in Figure 6–14, the input carry to the least significant stage has to ripple through all the

adders before a final sum is produced. The cumulative delay through all the adder stages is

a “worst-case” addition time. The total delay can vary, depending on the carry bit produced

by each full-adder. If two numbers are added such that no carries (0) occur between stages,

the addition time is simply the propagation time through a single full-adder from the appli-

cation of the data bits on the inputs to the occurrence of a sum output; however, worst-case

addition time must always be assumed.

The Look-Ahead Carry Adder

The speed with which an addition can be performed is limited by the time required for the

carries to propagate, or ripple, through all the stages of a parallel adder. One method of

speed-ing up the addition process by eliminating this ripple carry delay is called look-

ahead carry addition. The look-ahead carry adder anticipates the output carry of each

stage, and based on the inputs, produces the output carry by either carry generation or

carry propagation.
Carry generation occurs when an output carry is produced (generated) internally by

the full-adder. A carry is generated only when both input bits are 1s. The generated carry,

Cg, is expressed as the AND function of the two input bits, A and B.

Cg � AB Equation 6–5

Carry propagation occurs when the input carry is rippled to become the output carry.

An input carry may be propagated by the full-adder when either or both of the input bits are

1s. The propagated carry, Cp, is expressed as the OR function of the input bits.

Cp � A � B Equation 6–6

The conditions for carry generation and carry propagation are illustrated in Figure 6–15.

The three arrowheads symbolize ripple (propagation).

0 1 1

1

Generated
carry

1

Propagated
carry

1

Propagated carry/
Generated carry

1011111

A

Σ

BA

Σ

B Cin
Cin

Cout Cout

A

Σ

B Cin

Cout

10

A

Σ

B Cin

Cout

1

Propagated
carry

FIGURE 6–15 Illustration of conditions for carry generation and carry propagation.

The output carry of a full-adder can be expressed in terms of both the generated carry

(Cg) and the propagated carry (Cp). The output carry (Cout) is a 1 if the generated carry is

a 1 OR if the propagated carry is a 1 AND the input carry (Cin) is a 1. In other words, we

get an output carry of 1 if it is generated by the full-adder (A = 1 AND B = 1) or if the

adder propagates the input carry (A = 1 OR B = 1) AND Cin = 1. This relationship is

expressed as

Cout � Cg � CpCin Equation 6–7

Now let’s see how this concept can be applied to a parallel adder, whose individual

stages are shown in Figure 6–16 for a 4-bit example. For each full-adder, the output carry is

3

Based on this analysis, we can now develop expressions for the output carry, Cout, of

each full-adder stage for the 4-bit example.

Full-adder 1:

Cout1 = Cg1 + Cp1Cin1

Full-adder 2:

 Cin2 = Cout1

 Cout2 = Cg2 + Cp2Cin2 = Cg2 + Cp2Cout1 = Cg2 + Cp2(Cg1 + Cp1Cin1)

= Cg2 + Cp2Cg1 + Cp2Cp1Cin1

Full-adder 3:

Cin3 = Cout2

 Cout3 = Cg3 + Cp3Cin3 = Cg3 + Cp3Cout2 = Cg3 + Cp3(Cg2 + Cp2Cg1 + Cp2Cp1Cin1)

= Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1

Full-adder 4:

Cin4 = Cout3

Cout4 = Cg4 + Cp4Cin4 = Cg4 + Cp4Cout3

= Cg4 + Cp4(Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1)

= Cg4 + Cp4Cg3 + Cp4Cp3Cg2 + Cp4Cp3Cp2Cg1 + Cp4Cp3Cp2Cp1Cin1

Notice that in each of these expressions, the output carry for each full-adder stage is

dependent only on the initial input carry (Cin1), the Cg and Cp functions of that stage, and

the Cg and Cp functions of the preceding stages. Since each of the Cg and Cp functions can

be expressed in terms of the A and B inputs to the full-adders, all the output carries are

immediately available (except for gate delays), and you do not have to wait for a carry to

ripple through all the stages before a final result is achieved. Thus, the look-ahead carry

technique speeds up the addition process.

The Cout equations are implemented with logic gates and connected to the full-adders to

create a 4-bit look-ahead carry adder, as shown in Figure 6–17.

A2 B2

Cin2

A

Σ

BA

Σ

B Cin
Cin

Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

FA1FA2FA3FA4

Cout4

A4 B4

Cin4

A3 B3

Cin3

A1 B1

Cin1

Cout3 Cout2 Cout1

Full-adder 4

Cg4 = A4B4

Cp4 = A4 + B4

Full-adder 3

Cg3 = A3B3

Cp3 = A3 + B3

Full-adder 2

Cg2 = A2B2

Cp2 = A2 + B2

Full-adder 1

Cg1 = A1B1

Cp1 = A1 + B1

FIGURE 6–16 Carry generation and carry propagation in terms of the input bits to

a 4-bit adder.

dependent on the generated carry (Cg), the propagated carry (Cp), and its input carry (Cin).

The Cg and Cp functions for each stage are immediately available as soon as the input bits

A and B and the input carry to the LSB adder are applied because they are dependent only

on these bits. The input carry to each stage is the output carry of the previous stage.

4

Combination Look-Ahead and Ripple Carry Adders

As with most fixed-function IC adders, the 74HC283 4-bit adder that was introduced in

Section 6–2 is a look-ahead carry adder. When these adders are cascaded to expand their

capability to handle binary numbers with more than four bits, the output carry of one adder

is connected to the input carry of the next. This creates a ripple carry condition between

the 4-bit adders so that when two or more 74HC283s are cascaded, the resulting adder is

actually a combination look-ahead and ripple carry adder. The look-ahead carry operation

is internal to each MSI adder and the ripple carry feature comes into play when there is a

carry out of one of the adders to the next one.

A

Σ

B

Cin

A4 B4 A3 B3 A2 B2 A1 B1

Σ1(LSB)

A

Σ

B

Cin

A

Σ

B

Cin

A

Σ

B

Cin Cin1

Cg4

Cp4

Cg3

Cp3

Cg2

Cp2

Cg1

Cp1

Cout3

Cout2

Cout1

Cout4

Σ4(MSB) Σ 3 Σ2

FIGURE 6–17 Logic diagram for a 4-stage look-ahead carry adder.

SECTION 6–3 CHECKUP

1. The input bits to a full-adder are A = 1 and B = 0. Determine Cg and Cp.

2. Determine the output carry of a full-adder when Cin = 1, Cg = 0, and Cp = 1.

6–4 Comparators

The basic function of a comparator is to compare the magnitudes of two binary

quantities to determine the relationship of those quantities. In its simplest form, a

comparator circuit determines whether two numbers are equal.

Equality

As you learned in Chapter 3, the exclusive-NOR gate can be used as a basic comparator

because its output is a 0 if the two input bits are not equal and a 1 if the input bits are equal.

Figure 6–18 shows the exclusive-NOR gate as a 2-bit comparator.

5

In order to compare binary numbers containing two bits each, an additional exclusive-

NOR gate is necessary. The two least significant bits (LSBs) of the two numbers are com-

pared by gate G1, and the two most significant bits (MSBs) are compared by gate G2, as

shown in Figure 6–19. If the two numbers are equal, their corresponding bits are the same,

and the output of each exclusive-NOR gate is a 1. If the corresponding sets of bits are not

equal, a 0 occurs on that exclusive-NOR gate output.

0
1

0
The input bits are not equal.

1
1

1
The input bits are equal.

1
0

0
The input bits are equal.

0
0

1
The input bits are not equal.

FIGURE 6–18 Basic comparator operation.

General format: Binary number A → A1A0
Binary number B → B1B0

A0

B0

A1

B1

A = B
HIGH indicates
equality.

G1

G2MSBs

LSBs

FIGURE 6–19 Logic diagram for equality comparison of two 2-bit numbers. Open

file F06-19 to verify operation.

In order to produce a single output indicating an equality or inequality of two numbers,

an AND gate can be combined with XNOR gates, as shown in Figure 6–19. The output of

each exclusive-NOR gate is applied to the AND gate input. When the two input bits for

each exclusive-NOR are equal, the corresponding bits of the numbers are equal, producing

a 1 on both inputs to the AND gate and thus a 1 on the output. When the two numbers are

not equal, one or both sets of corresponding bits are unequal, and a 0 appears on at least

one input to the AND gate to produce a 0 on its output. Thus, the output of the AND gate

indicates equality (1) or inequality (0) of the two numbers. Example 6–5 illustrates this

operation for two specific cases.

EXAMPLE 6–5

Apply each of the following sets of binary numbers to the comparator inputs in Figure 6–20, and determine the output by

following the logic levels through the circuit.

(a) 10 and 10 (b) 11 and 10

A0 = 1

B0 = 0

A1 = 1

B1 = 1

0 → not equal

0

1

(b)

A0 = 0

B0 = 0

A1 = 1

B1 = 1

1 → equal

1

1

(a)

FIGURE 6–20

6

As you know from Chapter 3, the basic comparator can be expanded to any number of

bits. The AND gate sets the condition that all corresponding bits of the two numbers must

be equal if the two numbers themselves are equal.

Inequality

In addition to the equality output, fixed-function comparators can provide additional out-

puts that indicate which of the two binary numbers being compared is the larger. That is,

there is an output that indicates when number A is greater than number B (A 7 B) and an

output that indicates when number A is less than number B (A 6 B), as shown in the logic

symbol for a 4-bit comparator in Figure 6–21.

To determine an inequality of binary numbers A and B, you first examine the highest-

order bit in each number. The following conditions are possible:

1. If A3 = 1 and B3 = 0, number A is greater than number B.

2. If A3 = 0 and B3 = 1, number A is less than number B.

3. If A3 = B3, then you must examine the next lower bit position for an inequality.

These three operations are valid for each bit position in the numbers. The general pro-

cedure used in a comparator is to check for an inequality in a bit position, starting with

the highest-order bits (MSBs). When such an inequality is found, the relationship of the

two numbers is established, and any other inequalities in lower-order bit positions must be

ignored because it is possible for an opposite indication to occur; the highest-order indica-

tion must take precedence.

Solution

(a) The output is 1 for inputs 10 and 10, as shown in Figure 6–20(a).

(b) The output is 0 for inputs 11 and 10, as shown in Figure 6–20(b).

Related Problem

Repeat the process for binary inputs of 01 and 10.

A0

A1

A2

A3

B0

B1

B2

B3

A

0

3

B

0

3

COMP

A > B

A = B

A < B

FIGURE 6–21 Logic symbol for

a 4-bit comparator with

inequality indication.

EXAMPLE 6–6

Determine the A = B, A 7 B, and A 6 B outputs for the input numbers shown on the
comparator in Figure 6–22.

A

0

3

B

0

3

COMP
0

1

1

0

1

1

0

0

A > B

A = B

A < B

FIGURE 6–22

Solution

The number on the A inputs is 0110 and the number on the B inputs is 0011. The A + B

output is HIGH and the other outputs are LOW.

Related Problem

What are the comparator outputs when A3A2A1A0 = 1001 and B3B2B1B0 = 1010?

7

EXAMPLE 6–7

Use 74HC85 comparators to compare the magnitudes of two 8-bit numbers. Show the

comparators with proper interconnections.

Solution

Two 74HC85s are required to compare two 8-bit numbers. They are connected as

shown in Figure 6–25 in a cascaded arrangement.

A

0

3

B

0

3

COMP

Outputs+5 V

A4

A5

A6

A7

B4

B5

B6

B7

A

0

3

B

0

3

COMP

A > B

A = B

A < B

A > B

A = B

A < B

A0

A1

A2

A3

B0

B1

B2

B3

LSBs MSBs

A > B

A = B

A < B

A > B

A = B

A < B

74HC8574HC85

FIGURE 6–25 An 8-bit magnitude comparator using two 74HC85s.

Related Problem

Expand the circuit in Figure 6–25 to a 16-bit comparator.

SECTION 6–4 CHECKUP

1. The binary numbers A = 1011 and B = 1010 are applied to the inputs of a 74HC85.

Determine the outputs.

2. The binary numbers A = 11001011 and B = 11010100 are applied to the 8-bit

comparator in Figure 6–25. Determine the states of the outputs on each comparator.

6–5 Decoders

A decoder is a digital circuit that detects the presence of a specified combination of bits

(code) on its inputs and indicates the presence of that code by a specified output level. In

its general form, a decoder has n input lines to handle n bits and from one to 2n output lines
to indicate the presence of one or more n-bit combinations. In this section, three fixed-

function IC decoders are introduced. The basic principles can be extended to other types

of decoders.

The Basic Binary Decoder

Suppose you need to determine when a binary 1001 occurs on the inputs of a digital cir-

cuit. An AND gate can be used as the basic decoding element because it produces a HIGH

output only when all of its inputs are HIGH. Therefore, you must make sure that all of the

inputs to the AND gate are HIGH when the binary number 1001 occurs; this can be done

by inverting the two middle bits (the 0s), as shown in Figure 6–26.

8

1

1

(a)

1

0

0

1

1

A1

A2

(b)

A0

A1

A2

A3

(LSB)

(MSB)

X = A3A2A1A0

FIGURE 6–26 Decoding logic for the binary code 1001 with an active-HIGH output.

The logic equation for the decoder of Figure 6–26(a) is developed as illustrated in Figure

6–26(b). You should verify that the output is 0 except when A0 = 1, A1 = 0, A2 = 0, and

A3 = 1 are applied to the inputs. A0 is the LSB and A3 is the MSB. In the representation of

a binary number or other weighted code in this book, the LSB is the right-most bit in a hori-

zontal arrangement and the topmost bit in a vertical arrangement, unless specified otherwise.

If a NAND gate is used in place of the AND gate in Figure 6–26, a LOW output will

indicate the presence of the proper binary code, which is 1001 in this case.

EXAMPLE 6–8

Determine the logic required to decode the binary number 1011 by producing a HIGH

level on the output.

Solution

The decoding function can be formed by complementing only the variables that appear

as 0 in the desired binary number, as follows:

X = A3A2A1A0 (1011)

This function can be implemented by connecting the true (uncomplemented) variables

A0, A1, and A3 directly to the inputs of an AND gate, and inverting the variable A2

before applying it to the AND gate input. The decoding logic is shown in Figure 6–27.

Related Problem

Develop the logic required to detect the binary code 10010 and produce an active-LOW

output.

A2

A0

A1

A2

A3

X = A3A2A1A0

FIGURE 6–27 Decoding logic for producing a HIGH output when 1011 is on

the inputs.

The 4-Bit Decoder

In order to decode all possible combinations of four bits, sixteen decoding gates are

required (24
= 16). This type of decoder is commonly called either a 4-line-to-16-line

decoder because there are four inputs and sixteen outputs or a 1-of-16 decoder because for

any given code on the inputs, one of the sixteen outputs is activated. A list of the sixteen

binary codes and their corresponding decoding functions is given in Table 6–4.

9

TABLE 6–4

Decoding functions and truth table for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs.

Decimal

Digit

Binary Inputs Decoding

Function

Outputs

A3 A2 A1 A0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 A3A2A1A0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 A3A2A1A0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0 1 0 A3A2A1A0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 1 1 A3A2A1A0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

4 0 1 0 0 A3A2A1A0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

5 0 1 0 1 A3A2A1A0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

6 0 1 1 0 A3A2A1A0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

7 0 1 1 1 A3A2A1A0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

8 1 0 0 0 A3A2A1A0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

9 1 0 0 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

10 1 0 1 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

11 1 0 1 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

12 1 1 0 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

13 1 1 0 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

14 1 1 1 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

15 1 1 1 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

If an active-LOW output is required for each decoded number, the entire decoder can be

implemented with NAND gates and inverters. In order to decode each of the sixteen binary

codes, sixteen NAND gates are required (AND gates can be used to produce active-HIGH

outputs).

A logic symbol for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs is

shown in Figure 6–28. The BIN/DEC label indicates that a binary input makes the corre-

sponding decimal output active. The input labels 8, 4, 2, and 1 represent the binary weights

of the input bits (23222120).

BIN/DEC
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

4

8

15

FIGURE 6–28 Logic symbol for a 4-line-to-16-line (1-of-16) decoder. Open file F06-28

to verify operation.

10

The BCD-to-Decimal Decoder

The BCD-to-decimal decoder converts each BCD code (8421 code) into one of ten possible deci-

mal digit indications. It is frequently referred as a 4-line-to-10-line decoder or a 1-of-10 decoder.

The method of implementation is the same as for the 1-of-16 decoder previously dis-

cussed, except that only ten decoding gates are required because the BCD code represents

only the ten decimal digits 0 through 9. A list of the ten BCD codes and their corresponding

decoding functions is given in Table 6–5. Each of these decoding functions is implemented

with NAND gates to provide active-LOW outputs. If an active-HIGH output is required,

AND gates are used for decoding. The logic is identical to that of the first ten decoding

gates in the 1-of-16 decoder (see Table 6–4).

TABLE 6–5

BCD decoding functions.

Decimal

Digit

BCD Code Decoding

FunctionA3 A2 A1 A0

0 0 0 0 0 A3A2A1A0

1 0 0 0 1 A3A2A1A0

2 0 0 1 0 A3A2A1A0

3 0 0 1 1 A3A2A1A0

4 0 1 0 0 A3A2A1A0

5 0 1 0 1 A3A2A1A0

6 0 1 1 0 A3A2A1A0

7 0 1 1 1 A3A2A1A0

8 1 0 0 0 A3A2A1A0

9 1 0 0 1 A3A2A1A0

The BCD-to-7-Segment Decoder

The BCD-to-7-segment decoder accepts the BCD code on its inputs and provides outputs

to drive 7-segment display devices to produce a decimal readout. The logic diagram for a

basic 7-segment decoder is shown in Figure 6–33.

A0

A1

A2

A3

1

2

4

8

a

b

c

d

e

f

g

BCD/7-seg

Output lines
connect to
7-segment
display device

BCD
input

FIGURE 6–33 Logic symbol for a BCD-to-7-segment decoder/driver with active-LOW

outputs. Open file F06-33 to verify operation.

SECTION 6–5 CHECKUP

1. A 3-line-to-8-line decoder can be used for octal-to-decimal decoding. When a binary

101 is on the inputs, which output line is activated?

2. How many 74HC154 1-of-16 decoders are necessary to decode a 6-bit binary

number?

3. Would you select a decoder/driver with active-HIGH or active-LOW outputs to drive

a common-cathode 7-segment LED display?

