
4.4 Indirect Addressing
4.4.1 Indirect Operands
4.4.2 Arrays
4.4.3 Indexed Operands
4.4.4 Pointers

4.5 JMP and LOOP Instructions
4.5.1 JMP Instruction
4.5.2 LOOP Instruction
4.5.3 Displaying an Array in the Visual Studio

Debugger
4.5.4 Summing an Integer Array
4.5.5 Copying a String

4.6 64-Bit Programming
4.6.1 MOV Instruction
4.6.2 64-Bit Version of SumArray
4.6.3 Addition and Subtraction

Lecture No.10

Lecture Outlines

1

4.4 Indirect Addressing
Direct addressing is rarely used for array processing because it is impractical to use constant off-
sets to address more than a few array elements. Instead, we use a register as a pointer (called
indirect addressing) and manipulate the register’s value. When an operand uses indirect address-
ing, it is called an indirect operand.

4.4.1 Indirect Operands

Protected Mode An indirect operand can be any 32-bit general-purpose register (EAX, EBX,
ECX, EDX, ESI, EDI, EBP, and ESP) surrounded by brackets. The register is assumed to contain the
address of some data. In the next example, ESI contains the offset of byteVal. The MOV instruction
uses the indirect operand as the source, the offset in ESI is dereferenced, and a byte is moved to AL:

.data
byteVal BYTE 10h
.code
mov esi,OFFSET byteVal
mov al,[esi] ; AL = 10h

If the destination operand uses indirect addressing, a new value is placed in memory at the loca-
tion pointed to by the register. In the following example, the contents of the BL register are cop-
ied to the memory location addressed by ESI.

mov [esi],bl

Using PTR with Indirect Operands The size of an operand may not be evident from the
context of an instruction. The following instruction causes the assembler to generate an “oper-
and must have size” error message:

inc [esi] ; error: operand must have size

The assembler does not know whether ESI points to a byte, word, doubleword, or some other
size. The PTR operator confirms the operand size:

inc BYTE PTR [esi]

4.4.2 Arrays
Indirect operands are ideal tools for stepping through arrays. In the next example, arrayB con-
tains 3 bytes. As ESI is incremented, it points to each byte, in order:

; AL = 10h

; AL = 20h

.data
arrayB BYTE 10h,20h,30h
.code
mov esi,OFFSET arrayB
mov al,[esi]
inc esi
mov al,[esi]
inc esi
mov al,[esi] ; AL = 30h

2

If we use an array of 16-bit integers, we add 2 to ESI to address each subsequent array element:

.data
arrayW WORD 1000h,2000h,3000h
.code
mov esi,OFFSET arrayW
mov ax,[esi] ; AX = 1000h
add esi,2
mov ax,[esi] ; AX = 2000h
add esi,2
mov ax,[esi] ; AX = 3000h

Suppose arrayW is located at offset 10200h. The following illustration shows the initial value
of ESI in relation to the array data:

Offset

1000h

2000h

10200

10202

10204 3000h

Value

[esi]

Example: Adding 32-Bit Integers The following code example adds three doublewords.
A displacement of 4 must be added to ESI as it points to each subsequent array value because
doublewords are 4 bytes long:

.data
arrayD DWORD 10000h,20000h,30000h
.code
mov esi,OFFSET arrayD
mov eax,[esi] ; first number

; second number
add esi,4
add eax,[esi]
add esi,4
add eax,[esi] ; third number

Suppose arrayD is located at offset 10200h. Then the following illustration shows the initial
value of ESI in relation to the array data:

Offset

10200

10204

10208

[esi]

[esi] � 4

[esi] � 8

10000h

20000h

30000h

Value

3

4.4.3 Indexed Operands
An indexed operand adds a constant to a register to generate an effective address. Any of the
32-bit general-purpose registers may be used as index registers. There are different notational
forms permitted by MASM (the brackets are part of the notation):

constant[reg]
[constant + reg]

The first notational form combines the name of a variable with a register. The variable name is
translated by the assembler into a constant that represents the variable’s offset. Here are exam-
ples that show both notational forms:

Indexed operands are ideally suited to array processing. The index register should be initialized
to zero before accessing the first array element:

.data
arrayB BYTE 10h,20h,30h
.code
mov esi,0
mov al,arrayB[esi] ; AL = 10h

arrayB[esi] [arrayB + esi]

arrayD[ebx] [arrayD + ebx]

The last statement adds ESI to the offset of arrayB. The address generated by the expression
[arrayB � ESI] is dereferenced and the byte in memory is copied to AL.

Adding Displacements The second type of indexed addressing combines a register with a
constant offset. The index register holds the base address of an array or structure, and the con-
stant identifies offsets of various array elements. The following example shows how to do this
with an array of 16-bit words:

.data
arrayW WORD 1000h,2000h,3000h
.code
mov esi,OFFSET arrayW
mov ax,[esi]
mov ax,[esi+2]
mov ax,[esi+4]

; AX = 1000h
; AX = 2000h
; AX = 3000h

Using 16-Bit Registers It is usual to use 16-bit registers as indexed operands in real-address
mode. In that case, you are limited to using SI, DI, BX, or BP:

mov al,arrayB[si]
mov ax,arrayW[di]
mov eax,arrayD[bx]

As is the case with indirect operands, avoid using BP except when addressing data on the stack.

4

Scale Factors in Indexed Operands
Indexed operands must take into account the size of each array element when calculating
offsets. Using an array of doublewords, as in the following example, we multiply the sub-
script (3) by 4 (the size of a doubleword) to generate the offset of the array element contain-
ing 400h:

.data
arrayD DWORD 100h, 200h, 300h, 400h
.code
mov esi,3 * TYPE arrayD ; offset of arrayD[3]
mov eax,arrayD[esi] ; EAX = 400h

Intel designers wanted to make a common operation easier for compiler writers, so they
provided a way for offsets to be calculated, using a scale factor. The scale factor is the size of the
array component (word � 2, doubleword � 4, or quadword � 8). Let’s revise our previous
example by setting ESI to the array subscript (3) and multiplying ESI by the scale factor (4) for
doublewords:

.data
arrayD DWORD 1,2,3,4
.code
mov esi,3 ; subscript
mov eax,arrayD[esi*4] ; EAX = 4

The TYPE operator can make the indexing more flexible should arrayD be redefined as another
type in the future:

; subscriptmov esi,3
mov eax,arrayD[esi*TYPE arrayD] ; EAX = 4

4.4.4 Pointers
A variable containing the address of another variable is called a pointer. Pointers are a great tool for
manipulating arrays and data structures because the address they hold can be modified at runtime.
You might use a system call to allocate (reserve) a block of memory, for example, and save the
address of that block in a variable. A pointer’s size is affected by the processor’s current mode (32-bit
or 64-bit). In the following 32-bit code example, ptrB contains the offset of arrayB:

.data
arrayB byte 10h,20h,30h,40h
ptrB dword arrayB

Optionally, you can declare ptrB with the OFFSET operator to make the relationship
clearer:

ptrB dword OFFSET arrayB

5

The 32-bit mode programs in this book use near pointers, so they are stored in doubleword
variables. Here are two examples: ptrB contains the offset of arrayB, and ptrW contains the
offset of arrayW:

arrayB BYTE 10h,20h,30h,40h
arrayW WORD 1000h,2000h,3000h
ptrB DWORD arrayB
ptrW DWORD arrayW

Optionally, you can use the OFFSET operator to make the relationship clearer:

ptrB DWORD OFFSET arrayB
ptrW DWORD OFFSET arrayW

Using the TYPEDEF Operator
The TYPEDEF operator lets you create a user-defined type that has all the status of a built-in
type when defining variables. TYPEDEF is ideal for creating pointer variables. For example, the
following declaration creates a new data type PBYTE that is a pointer to bytes:

PBYTE TYPEDEF PTR BYTE

This declaration would usually be placed near the beginning of a program, before the data seg-
ment. Then, variables could be defined using PBYTE:

.data
arrayB BYTE 10h,20h,30h,40h
ptr1 PBYTE ? ; uninitialized
ptr2 PBYTE arrayB ; points to an array

High-level languages purposely hide physical details about pointers because their implementa-
tions vary among different machine architectures. In assembly language, because we deal with a
single implementation, we examine and use pointers at the physical level. This approach helps to
remove some of the mystery surrounding pointers.

Example Program: Pointers The following program (pointers.asm) uses TYPDEF to create
three pointer types (PBYTE, PWORD, PDWORD). It creates several pointers, assigns several
array offsets, and dereferences the pointers:

TITLE Pointers (Pointers.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess proto,dwExitCode:dword

; Create user-defined types.
PBYTE TYPEDEF PTR BYTE
PWORD TYPEDEF PTR WORD
PDWORD TYPEDEF PTR DWORD

; pointer to bytes
; pointer to words
; pointer to doublewords

6

.data
arrayB BYTE 10h,20h,30h
arrayW WORD 1,2,3
arrayD DWORD 4,5,6

; Create some pointer variables.
ptr1 PBYTE arrayB
ptr2 PWORD arrayW
ptr3 PDWORD arrayD

.code
main PROC
; Use the pointers to access data.

mov esi,ptr1
mov al,[esi] ; 10h
mov esi,ptr2
mov ax,[esi] ; 1
mov esi,ptr3
mov eax,[esi] ; 4
invoke ExitProcess,0

main ENDP
END main

4.5 JMP and LOOP Instructions
By default, the CPU loads and executes programs sequentially. But the current instruction might
be conditional, meaning that it transfers control to a new location in the program based on the
values of CPU status flags (Zero, Sign, Carry, etc.). Assembly language programs use condi-
tional instructions to implement high-level statements such as IF statements and loops. Each of
the conditional statements involves a possible transfer of control (jump) to a different memory
address. A transfer of control, or branch, is a way of altering the order in which statements are
executed. There are two basic types of transfers:

• Unconditional Transfer: Control is transferred to a new location in all cases; a new address
is loaded into the instruction pointer, causing execution to continue at the new address. The
JMP instruction does this.

• Conditional Transfer: The program branches if a certain condition is true. A wide variety of
conditional transfer instructions can be combined to create conditional logic structures. The
CPU interprets true/false conditions based on the contents of the ECX and Flags registers.

4.5.1 JMP Instruction
The JMP instruction causes an unconditional transfer to a destination, identified by a code label
that is translated by the assembler into an offset. The syntax is

JMP destination

When the CPU executes an unconditional transfer, the offset of destination is moved into the
instruction pointer, causing execution to continue at the new location.

7

Creating a Loop The JMP instruction provides an easy way to create a loop by jumping to a
label at the top of the loop:

top:
.
.
jmp top ; repeat the endless loop

JMP is unconditional, so a loop like this will continue endlessly unless another way is found to
exit the loop.

4.5.2 LOOP Instruction
The LOOP instruction, formally known as Loop According to ECX Counter, repeats a block of
statements a specific number of times. ECX is automatically used as a counter and is decre-
mented each time the loop repeats. Its syntax is

LOOP destination

The loop destination must be within �128 to +127 bytes of the current location counter. The
execution of the LOOP instruction involves two steps: First, it subtracts 1 from ECX. Next, it
compares ECX to zero. If ECX is not equal to zero, a jump is taken to the label identified by des-
tination. Otherwise, if ECX equals zero, no jump takes place, and control passes to the instruc-
tion following the loop.

In the following example, we add 1 to AX each time the loop repeats. When the loop ends,
AX � 5 and ECX � 0:

 mov ax,0
 mov ecx,5
L1:
 inc ax
 loop L1

A common programming error is to inadvertently initialize ECX to zero before beginning a
loop. If this happens, the LOOP instruction decrements ECX to FFFFFFFFh, and the loop
repeats 4,294,967,296 times! If CX is the loop counter (in real-address mode), it repeats 65,536
times.

Occasionally, you might create a loop that is large enough to exceed the allowed relative
jump range of the LOOP instruction. Following is an example of an error message generated by
MASM because the target label of a LOOP instruction was too far away:

error A2075: jump destination too far : by 14 byte(s)

Rarely should you explicitly modify ECX inside a loop. If you do, the LOOP instruction may
not work as expected. In the following example, ECX is incremented within the loop. It never
reaches zero, so the loop never stops:

In real-address mode, CX is the default loop counter for the LOOP instruction. On the other hand,
the LOOPD instruction uses ECX as the loop counter, and the LOOPW instruction uses CX as the
loop counter.

8

top:
.
.
inc ecx
loop top

If you need to modify ECX inside a loop, you can save it in a variable at the beginning of the
loop and restore it just before the LOOP instruction:

.data
count DWORD ?
.code

mov ecx,100 ; set loop count
top:

mov count,ecx ; save the count
.
mov ecx,20 ; modify ECX
.
mov ecx,count ; restore loop count
loop top

Nested Loops When creating a loop inside another loop, special consideration must be
given to the outer loop counter in ECX. You can save it in a variable:

.data
count DWORD ?
.code

mov ecx,100 ; set outer loop count
L1:

mov count,ecx ; save outer loop count
mov ecx,20 ; set inner loop count

L2:
.
.
loop L2 ; repeat the inner loop

mov ecx,count ; restore outer loop count
loop L1 ; repeat the outer loop

As a general rule, nested loops more than two levels deep are difficult to write. If the algo-
rithm you’re using requires deep loop nesting, move some of the inner loops into subroutines.

4.5.3 Displaying an Array in the Visual Studio Debugger
In a debugging session, if you want to display the contents of an array, here’s how to do it: From
the Debug menu, select Windows, select Memory, then select Memory 1. A memory window will
appear, and you can use the mouse to drag and dock it to any side of the Visual Studio work-
space. You can also right-click the window’s title bar and indicate that you want the window to
float above the editor window. In the Address field at the top of the memory window, type the &
(ampersand) character, followed by the name of the array, and press Enter. For example,
&myArray would be a valid address expression. The memory window will display a block of
memory starting at the array’s address. Figure 4-8 shows an example.

9

Figure 4–8 Using the debugger’s memory window to display an array.

If your array values are doublewords, you can right-click inside the memory window and
select 4-byte integer from the popup menu. You can also select from different formats, including
Hexadecimal Display, signed decimal integer (called Signed Display), or unsigned decimal inte-
ger (called Unsigned Display) formats. The full set of choices is shown in Figure 4-9.

Figure 4–9 Popup menu for the debugger’s memory window.

4.5.4 Summing an Integer Array
There’s hardly any task more common in beginning programming than calculating the sum of
the elements in an array. In assembly language, you would follow these steps:

1. Assign the array’s address to a register that will serve as an indexed operand.
2. Initialize the loop counter to the length of the array.
3. Assign zero to the register that accumulates the sum.
4. Create a label to mark the beginning of the loop.
5. In the loop body, add a single array element to the sum.
6. Point to the next array element.
7. Use a LOOP instruction to repeat the loop.

10

Steps 1 through 3 may be performed in any order. Here’s a short program that sums an array of
16-bit integers.

; Summing an Array (SumArray.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess proto,dwExitCode:dword
.data
intarray DWORD 10000h,20000h,30000h,40000h

.code
main PROC

mov edi,OFFSET intarray ; 1: EDI = address of intarray
mov ecx,LENGTHOF intarray ; 2: initialize loop counter
mov eax,0 ; 3: sum = 0

L1: ; 4: mark beginning of loop
add eax,[edi] ; 5: add an integer
add edi,TYPE intarray ; 6: point to next element
loop L1 ; 7: repeat until ECX = 0

invoke ExitProcess,0
main ENDP
END main

4.5.5 Copying a String
Programs often copy large blocks of data from one location to another. The data may be arrays
or strings, but they can contain any type of objects. Let’s see how this can be done in assembly
language, using a loop that copies a string, represented as an array of bytes with a null termina-
tor value. Indexed addressing works well for this type of operation because the same index regis-
ter references both strings. The target string must have enough available space to receive the
copied characters, including the null byte at the end:

; Copying a String (CopyStr.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess proto,dwExitCode:dword
.data
source BYTE "This is the source string",0
target BYTE SIZEOF source DUP(0)

.code
main PROC

mov esi,0 ; index register
mov ecx,SIZEOF source ; loop counter

L1:
mov al,source[esi] ; get a character from source
mov target[esi],al ; store it in the target
inc esi ; move to next character

11

loop L1 ; repeat for entire string

invoke ExitProcess,0
main ENDP
END main

The MOV instruction cannot have two memory operands, so each character is moved from the
source string to AL, then from AL to the target string.

4.6 64-Bit Programming
4.6.1 MOV Instruction
The MOV instruction in 64-bit mode has a great deal in common with 32-bit mode. There are
just a few differences, which we will discuss here. Immediate operands (constants) may be 8, 16,
32, or 64 bits. Here’s a 64-bit example:

mov rax,0ABCDEFGAFFFFFFFFh ; 64-bit immediate operand

When you move a 32-bit constant to a 64-bit register, the upper 32 bits (bits 32–63) of the desti-
nation are cleared (equal to zero):

mov rax,0FFFFFFFFh ; rax = 00000000FFFFFFFF

When you move a 16-bit constant or an 8-bit constant into a 64-bit register, the upper bits are
also cleared:

mov rax,06666h
mov rax,055h

; clears bits 16-63
; clears bits 8-63

When you move memory operands into 64-bit registers, however, the results are mixed. For
example, moving a 32-bit memory operand into EAX (the lower half of RAX) causes the upper
32 bits in RAX to be cleared:

.data
myDword DWORD 80000000h
.code

rax,0FFFFFFFFFFFFFFFFhmov
mov eax,myDword ; RAX = 0000000080000000

But when you move an 8-bit or a 16-bit memory operand into the lower bits of RAX, the highest
bits in the destination register are not affected:

.data
myByte BYTE 55h
myWord WORD 6666h
.code
mov ax,myWord
mov al,myByte

; bits 16-63 are not affected
; bits 8-63 are not affected

The MOVSXD instruction (move with sign-extension) permits the source operand to be a 32-bit
register or memory operand. The following instructions cause RAX to equal
FFFFFFFFFFFFFFFFh:

12

mov ebx,0FFFFFFFFh
movsxd rax,ebx

The OFFSET operator generates a 64-bit address, which must be held by a 64-bit register or
variable. In the following example, we use the RSI register:

.data
myArray WORD 10,20,30,40
.code
mov rsi,OFFSET myArray

The LOOP instruction in 64-bit mode uses the RCX register as the loop counter.

With these basic concepts, you can write quite a few programs in 64-bit mode. Most of the
time, programming is easier if you consistently use 64-bit integer variables and 64-bit registers.
ASCII strings are a special case because they always contain bytes. Usually, you use indirect or
indexed addressing when processing them.

4.6.2 64-Bit Version of SumArray
Let’s recreate the SumArray program in 64-bit mode. It calculates the sum of an array of 64-bit
integers. First, we use the QWORD directive to create an array of quadwords. Then, we change
all 32-bit register names to 64-bit names. This is the complete program listing:

; Summing an Array (SumArray_64.asm)

ExitProcess PROTO
.data
intarray QWORD 1000000000000h,2000000000000h

QWORD 3000000000000h,4000000000000h
.code
main PROC

mov rdi,OFFSET intarray
mov rcx,LENGTHOF intarray
mov rax,0

L1:

; RDI = address of intarray
; initialize loop counter
; sum = 0
; mark beginning of loop
; add an integer
; point to next element
; repeat until RCX = 0
; ExitProcess return value

add rax,[rdi]
add rdi,TYPE intarray
loop L1
mov ecx,0
call ExitProcess

main ENDP
END

4.6.3 Addition and Subtraction
The ADD, SUB, INC, and DEC instructions affect the CPU status flags in the same way in 64-bit
mode as in 32-bit mode. In the following example, we add 1 to a 32-bit number in RAX. Each bit
carries to the left, causing a 1 to be inserted in bit 32:

mov rax,0FFFFFFFFh
add rax,1

; fill the lower 32 bits
; RAX = 100000000h

13

It always pays to know the sizes of your operands. When you use a partial register operand, be
aware that the remainder of the register is not modified. In the next example, the 16-bit sum in
AX rolls over to zero without affecting the upper bits in RAX. This happens because the opera-
tion uses 16-bit registers (AX and BX):

mov rax,0FFFFh ; RAX = 000000000000FFFF
mov bx,1
add ax,bx ; RAX = 0000000000000000

Similarly, in the following example, the sum in AL does not carry into any other bits within
RAX. After the ADD, RAX equals zero:

mov rax,0FFh ; RAX = 00000000000000FF
mov bl,1
add al,bl ; RAX = 0000000000000000

The same principle applies to subtraction. In the following code excerpt, subtracting 1 from zero
in EAX causes the lower 32 bits of RAX to become equal to (FFFFFFFFh). Similarly, sub-
tracting 1 from zero in AX causes the lower 16 bits of RAX to become equal to (FFFFh).

1–

1–

; RAX = 0000000000000000mov rax,0
mov ebx,1
sub eax,ebx
mov rax,0

; RAX = 00000000FFFFFFFF
; RAX = 0000000000000000

mov bx,1
sub ax,bx ; RAX = 000000000000FFFF

A 64-bit general-purpose register must be used when an instruction contains an indirect operand.
Remember that you must use the PTR operator to clarify the target operand’s size. Here are
examples, including one with a 64-bit target:

dec BYTE PTR [rdi]
inc WORD PTR [rbx]
inc QWORD PTR [rsi]

; 8-bit target
; 16-bit target
; 64-bit target

In 64-bit mode, you can use scale factors in indexed operands, just as you do in 32-bit mode. If
you’re working with an array of 64-bit integers, use a scale factor of 8. Here’s an example

; subscript

.data
array QWORD 1,2,3,4
.code
mov esi,3
mov eax,array[rsi*8] ; EAX = 4

In 64-bit mode, a pointer variable holds a 64-bit offset. In the following example, the ptrB vari-
able holds the offset of arrayB:

.data
arrayB BYTE 10h,20h,30h,40h
ptrB QWORD arrayB

Optionally, you can declare ptrB with the OFFSET operator to make the relationship clearer:

ptrB QWORD OFFSET arrayB

