
1

4.3 Elements of Cache Design (Contiuned)
Replacement Algorithms
Write Policy
Line Size
Number of Caches

4.4 Pentium 4 Cache Organization

Lecture No.10

Lecture Outlines

2

Replacement Algorithms

Once the cache has been filled, when a new block is brought into the cache, one of
the existing blocks must be replaced. For direct mapping, there is only one possible
line for any particular block, and no choice is possible. For the associative and set-
 associative techniques, a replacement algorithm is needed. To achieve high speed,
such an algorithm must be implemented in hardware. A number of algorithms have
been tried. We mention four of the most common. Probably the most effective is least
recently used (LRU): Replace that block in the set that has been in the cache longest
with no reference to it. For two- way set associative, this is easily implemented. Each
line includes a USE bit. When a line is referenced, its USE bit is set to 1 and the
USE bit of the other line in that set is set to 0. When a block is to be read into the
set, the line whose USE bit is 0 is used. Because we are assuming that more recently
used memory locations are more likely to be referenced, LRU should give the best
hit ratio. LRU is also relatively easy to implement for a fully associative cache. The
cache mechanism maintains a separate list of indexes to all the lines in the cache.
When a line is referenced, it moves to the front of the list. For replacement, the line
at the back of the list is used. Because of its simplicity of implementation, LRU is the
most popular replacement algorithm.

Another possibility is first- in- first- out (FIFO): Replace that block in the set that
has been in the cache longest. FIFO is easily implemented as a round- robin or circu-
lar buffer technique. Still another possibility is least frequently used (LFU): Replace
that block in the set that has experienced the fewest references. LFU could be imple-
mented by associating a counter with each line. A technique not based on usage (i.e.,
not LRU, LFU, FIFO, or some variant) is to pick a line at random from among the
candidate lines. Simulation studies have shown that random replacement provides
only slightly inferior performance to an algorithm based on usage [SMIT82].

Write Policy

When a block that is resident in the cache is to be replaced, there are two cases to
consider. If the old block in the cache has not been altered, then it may be over-
written with a new block without first writing out the old block. If at least one write
operation has been performed on a word in that line of the cache, then main mem-
ory must be updated by writing the line of cache out to the block of memory before
bringing in the new block. A variety of write policies, with performance and eco-
nomic trade- offs, is possible. There are two problems to contend with. First, more
than one device may have access to main memory. For example, an I/O module
may be able to read- write directly to memory. If a word has been altered only in
the cache, then the corresponding memory word is invalid. Further, if the I/O device
has altered main memory, then the cache word is invalid. A more complex problem
occurs when multiple processors are attached to the same bus and each processor
has its own local cache. Then, if a word is altered in one cache, it could conceivably
invalidate a word in other caches.

The simplest technique is called write through. Using this technique, all write
operations are made to main memory as well as to the cache, ensuring that main
memory is always valid. Any other processor– cache module can monitor traffic to
main memory to maintain consistency within its own cache. The main disadvantage

3

of this technique is that it generates substantial memory traffic and may create a bot-
tleneck. An alternative technique, known as write back, minimizes memory writes.
With write back, updates are made only in the cache. When an update occurs, a
dirty bit, or use bit, associated with the line is set. Then, when a block is replaced, it
is written back to main memory if and only if the dirty bit is set. The problem with
write back is that portions of main memory are invalid, and hence accesses by I/O
modules can be allowed only through the cache. This makes for complex circuitry
and a potential bottleneck. Experience has shown that the percentage of memory
references that are writes is on the order of 15% [SMIT82]. However, for HPC
applications, this number may approach 33% (vector- vector multiplication) and can
go as high as 50% (matrix transposition).

For the write- back case, each dirty line is written back once, at swap- out time, taking
8 * 30 = 240 ns. For the write- through case, each update of the line requires that one
word be written out to main memory, taking 30 ns. Therefore, if the average line that gets
written at least once gets written more than 8 times before swap out, then write back is
more efficient.

In a bus organization in which more than one device (typically a processor)
has a cache and main memory is shared, a new problem is introduced. If data in one
cache are altered, this invalidates not only the corresponding word in main memory,
but also that same word in other caches (if any other cache happens to have that
same word). Even if a write- through policy is used, the other caches may contain
invalid data. A system that prevents this problem is said to maintain cache coher-
ency. Possible approaches to cache coherency include the following:

■ Bus watching with write through: Each cache controller monitors the address
lines to detect write operations to memory by other bus masters. If another
master writes to a location in shared memory that also resides in the cache
memory, the cache controller invalidates that cache entry. This strategy
depends on the use of a write- through policy by all cache controllers.

■ Hardware transparency: Additional hardware is used to ensure that all
updates to main memory via cache are reflected in all caches. Thus, if one pro-
cessor modifies a word in its cache, this update is written to main memory. In
addition, any matching words in other caches are similarly updated.

■ Noncacheable memory: Only a portion of main memory is shared by more
than one processor, and this is designated as noncacheable. In such a system,
all accesses to shared memory are cache misses, because the shared memory
is never copied into the cache. The noncacheable memory can be identified
using chip- select logic or high- address bits.

 EXAMPLE 4.3 Consider a cache with a line size of 32 bytes and a main memory that
requires 30 ns to transfer a 4-byte word. For any line that is written at least once before
being swapped out of the cache, what is the average number of times that the line must be
written before being swapped out for a write- back cache to be more efficient that a write-
 through cache?

4

Cache coherency is an active field of research. This topic is explored further
in Part Five.

Line Size

Another design element is the line size. When a block of data is retrieved and placed
in the cache, not only the desired word but also some number of adjacent words are
retrieved. As the block size increases from very small to larger sizes, the hit ratio
will at first increase because of the principle of locality, which states that data in the
vicinity of a referenced word are likely to be referenced in the near future. As the
block size increases, more useful data are brought into the cache. The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability of
using the newly fetched information becomes less than the probability of reusing the
information that has to be replaced. Two specific effects come into play:

■ Larger blocks reduce the number of blocks that fit into a cache. Because each
block fetch overwrites older cache contents, a small number of blocks results
in data being overwritten shortly after they are fetched.

■ As a block becomes larger, each additional word is farther from the requested
word and therefore less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on
the locality characteristics of a particular program, and no definitive optimum value
has been found. A size of from 8 to 64 bytes seems reasonably close to optimum
[SMIT87, PRZY88, PRZY90, HAND98]. For HPC systems, 64- and 128-byte cache
line sizes are most frequently used.

Number of Caches

When caches were originally introduced, the typical system had a single cache. More
recently, the use of multiple caches has become the norm. Two aspects of this design
issue concern the number of levels of caches and the use of unified versus split caches.

multilevel caches As logic density has increased, it has become possible to
have a cache on the same chip as the processor: the on- chip cache. Compared with
a cache reachable via an external bus, the on- chip cache reduces the processor’s
external bus activity and therefore speeds up execution times and increases overall
system performance. When the requested instruction or data is found in the on-
 chip cache, the bus access is eliminated. Because of the short data paths internal
to the processor, compared with bus lengths, on- chip cache accesses will complete
appreciably faster than would even zero- wait state bus cycles. Furthermore, during
this period the bus is free to support other transfers.

The inclusion of an on- chip cache leaves open the question of whether an
 off- chip, or external, cache is still desirable. Typically, the answer is yes, and most
contemporary designs include both on- chip and external caches. The simplest such
organization is known as a two- level cache, with the internal level 1 (L1) and the
external cache designated as level 2 (L2). The reason for including an L2 cache is
the following: If there is no L2 cache and the processor makes an access request for
a memory location not in the L1 cache, then the processor must access DRAM or

5

ROM memory across the bus. Due to the typically slow bus speed and slow memory
access time, this results in poor performance. On the other hand, if an L2 SRAM
(static RAM) cache is used, then frequently the missing information can be quickly
retrieved. If the SRAM is fast enough to match the bus speed, then the data can be
accessed using a zero- wait state transaction, the fastest type of bus transfer.

Two features of contemporary cache design for multilevel caches are note-
worthy. First, for an off- chip L2 cache, many designs do not use the system bus as
the path for transfer between the L2 cache and the processor, but use a separate
data path, so as to reduce the burden on the system bus. Second, with the continued
shrinkage of processor components, a number of processors now incorporate the L2
cache on the processor chip, improving performance.

The potential savings due to the use of an L2 cache depends on the hit rates
in both the L1 and L2 caches. Several studies have shown that, in general, the use
of a second- level cache does improve performance (e.g., see [AZIM92], [NOVI93],
[HAND98]). However, the use of multilevel caches does complicate all of the design
issues related to caches, including size, replacement algorithm, and write policy; see
[HAND98] and [PEIR99] for discussions.

Figure 4.17 shows the results of one simulation study of two- level cache perfor-
mance as a function of cache size [GENU04]. The figure assumes that both caches have
the same line size and shows the total hit ratio. That is, a hit is counted if the desired data
appears in either the L1 or the L2 cache. The figure shows the impact of L2 on total hits
with respect to L1 size. L2 has little effect on the total number of cache hits until it is at
least double the L1 cache size. Note that the steepest part of the slope for an L1 cache
of 8 kB is for an L2 cache of 16 kB. Again for an L1 cache of 16 kB, the steepest part
of the curve is for an L2 cache size of 32 kB. Prior to that point, the L2 cache has little,
if any, impact on total cache performance. The need for the L2 cache to be larger than

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1k 2k 4k 8k 16k 32k

L1 = 16k

64k 128k 256k 512k 1M 2M

H
it

 r
at

io

L1 = 8k

L2 cache size (bytes)

Figure 4.17 Total Hit Ratio (L1 and L2) for 8-kB and 16-kB L1

6

the L1 cache to affect performance makes sense. If the L2 cache has the same line size
and capacity as the L1 cache, its contents will more or less mirror those of the L1 cache.

With the increasing availability of on- chip area available for cache, most con-
temporary microprocessors have moved the L2 cache onto the processor chip and
added an L3 cache. Originally, the L3 cache was accessible over the external bus.
More recently, most microprocessors have incorporated an on- chip L3 cache. In
either case, there appears to be a performance advantage to adding the third level
(e.g., see [GHAI98]). Further, large systems, such as the IBM mainframe zEnter-
prise systems, now incorporate 3 on- chip cache levels and a fourth level of cache
shared across multiple chips [CURR11].

unified versus split caches When the on- chip cache first made an
appearance, many of the designs consisted of a single cache used to store references
to both data and instructions. More recently, it has become common to split the
cache into two: one dedicated to instructions and one dedicated to data. These two
caches both exist at the same level, typically as two L1 caches. When the processor
attempts to fetch an instruction from main memory, it first consults the instruction L1
cache, and when the processor attempts to fetch data from main memory, it first
consults the data L1 cache. There are two potential advantages of a unified cache:

■ For a given cache size, a unified cache has a higher hit rate than split caches
because it balances the load between instruction and data fetches automatically.
That is, if an execution pattern involves many more instruction fetches than data
fetches, then the cache will tend to fill up with instructions, and if an execution
pattern involves relatively more data fetches, the opposite will occur.

■ Only one cache needs to be designed and implemented.

The trend is toward split caches at the L1 and unified caches for higher levels,
particularly for superscalar machines, which emphasize parallel instruction execu-
tion and the prefetching of predicted future instructions. The key advantage of the
split cache design is that it eliminates contention for the cache between the instruction
fetch/decode unit and the execution unit. This is important in any design that relies on
the pipelining of instructions. Typically, the processor will fetch instructions ahead of
time and fill a buffer, or pipeline, with instructions to be executed. Suppose now that
we have a unified instruction/data cache. When the execution unit performs a memory
access to load and store data, the request is submitted to the unified cache. If, at the
same time, the instruction prefetcher issues a read request to the cache for an instruc-
tion, that request will be temporarily blocked so that the cache can service the execu-
tion unit first, enabling it to complete the currently executing instruction. This cache
contention can degrade performance by interfering with efficient use of the instruction
pipeline. The split cache structure overcomes this difficulty.

4.4 PENTIUM 4 CACHE ORGANIZATION

The evolution of cache organization is seen clearly in the evolution of Intel micro-
processors (Table 4.4). The 80386 does not include an on- chip cache. The 80486
includes a single on- chip cache of 8 kB, using a line size of 16 bytes and a four- way

 set- associative organization. All of the Pentium processors include two on- chip
L1 caches, one for data and one for instructions. For the Pentium 4, the L1 data
cache is 16 kB, using a line size of 64 bytes and a four- way set- associative organi-
zation. The Pentium 4 instruction cache is described subsequently. The Pentium II
also includes an L2 cache that feeds both of the L1 caches. The L2 cache is eight-
 way set associative with a size of 512 kB and a line size of 128 bytes. An L3 cache
was added for the Pentium III and became on- chip with high- end versions of the
Pentium 4.

Figure 4.18 provides a simplified view of the Pentium 4 organization, high-
lighting the placement of the three caches. The processor core consists of four major
components:

■ Fetch/decode unit: Fetches program instructions in order from the L2 cache,
decodes these into a series of micro- operations, and stores the results in the L1
instruction cache.

■ Out-of-order execution logic: Schedules execution of the micro- operations
subject to data dependencies and resource availability; thus, micro- operations
may be scheduled for execution in a different order than they were fetched
from the instruction stream. As time permits, this unit schedules speculative
execution of micro- operations that may be required in the future.

7

 Table 4.4 Intel Cache Evolution

Problem Solution
Processor on Which

Feature First Appears

External memory slower than the system
bus.

Add external cache using faster
memory technology.

386

Increased processor speed results in
external bus becoming a bottleneck for
cache access.

Move external cache on- chip,
operating at the same speed as the
processor.

486

Internal cache is rather small, due to
limited space on chip.

Add external L2 cache using faster
technology than main memory.

486

Contention occurs when both the
Instruction Prefetcher and the Execution
Unit simultaneously require access to
the cache. In that case, the Prefetcher is
stalled while the Execution Unit’s data
access takes place.

Create separate data and instruc-
tion caches.

Pentium

Increased processor speed results in
external bus becoming a bottleneck for
L2 cache access.

Create separate back- side bus that
runs at higher speed than the main
(front- side) external bus. The BSB
is dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the
processor chip.

Pentium II

Some applications deal with massive
databases and must have rapid access
to large amounts of data. The on- chip
caches are too small.

Add external L3 cache. Pentium III

Move L3 cache on- chip. Pentium 4

Load
address

unit

Integer register �le

L1 data cache (16 kB)

FP register �le

Store
address

unit

Simple
integer
ALU

Instruction
fetch/decode

unit

Out-of-order
execution

logic

L2 cache
(512 kB)

L3 cache
(1 MB)

L1 instruction
cache (12K mops)

Simple
integer
ALU

Complex
integer
ALU

FP/
MMX
unit

FP
move
unit

System bus

64
bits

256
bits

Figure 4.18 Pentium 4 Block Diagram

8

9

■ Execution units: These units execute micro- operations, fetching the required
data from the L1 data cache and temporarily storing results in registers.

■ Memory subsystem: This unit includes the L2 and L3 caches and the system
bus, which is used to access main memory when the L1 and L2 caches have a
cache miss and to access the system I/O resources.

Unlike the organization used in all previous Pentium models, and in most
other processors, the Pentium 4 instruction cache sits between the instruction
decode logic and the execution core. The reasoning behind this design decision is
as follows: As discussed more fully in Chapter 16, the Pentium process decodes, or
translates, Pentium machine instructions into simple RISC- like instructions called
 micro- operations. The use of simple, fixed- length micro- operations enables the use
of superscalar pipelining and scheduling techniques that enhance performance.
However, the Pentium machine instructions are cumbersome to decode; they have
a variable number of bytes and many different options. It turns out that perform-
ance is enhanced if this decoding is done independently of the scheduling and pipe-
lining logic. We return to this topic in Chapter 16.

The data cache employs a write- back policy: Data are written to main memory
only when they are removed from the cache and there has been an update. The Pen-
tium 4 processor can be dynamically configured to support write- through caching.

The L1 data cache is controlled by two bits in one of the control registers, labe-
led the CD (cache disable) and NW (not write- through) bits (Table 4.5). There are
also two Pentium 4 instructions that can be used to control the data cache: INVD
invalidates (flushes) the internal cache memory and signals the external cache (if
any) to invalidate. WBINVD writes back and invalidates internal cache and then
writes back and invalidates external cache.

Both the L2 and L3 caches are eight- way set- associative with a line size of 128
bytes.

Table 4.5 Pentium 4 Cache Operating Modes

Control Bits Operating Mode

CD NW Cache Fills Write Throughs Invalidates

0 0 Enabled Enabled Enabled

1 0 Disabled Enabled Enabled

1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.

