Water Demand Supply \& Distribution (CE-562)

 Lecture - 5

Engr. Nadeem Ullah Department of Civil Engineering, Iqra National University Peshawar

Water Supply Systems (Part - 1)

Introduction

> Water Supply System is concerned with extraction / provision, treatment and supply of water for municipal, industrial and / or irrigation purposes.
> Water supply system includes:
\checkmark Water pumping, storage and treatment
\checkmark Water transmission and distribution
$>$ Water pumping is concerned with:
\checkmark Lifting of water from source to storage
\checkmark Forcing water through water treatment facilities
\checkmark Forcing water through transmission and distribution systems

Introduction

$>$ Water storage could be:

\checkmark at source prior to transmission
\checkmark at the treatment plant (before and/or after)
\checkmark in between the transmission and distribution systems
\checkmark within the water distribution system
$>$ Water treatment could be:
\checkmark limited just to disinfection
\checkmark conventional (suspended \& colloidal solids removal, and disinfect)
\checkmark advanced (softening/demineralization, and removal of heavy metals, fluorides, organics, etc.)

Transmission System

> Conveys water from source(s) to a Distribution system and / or Storage Reservoir(s)
> Untreated and/or treated water is transmitted from source.
> Gravity flow transmission lines, through shortest route bypassing rough/difficult and inaccessible terrain are preferred for surface water source.
> Pumped flow pipelines are used for transmitting water from underground water source.

Transmission System

$>$ Gravity systems are low cost with no energy consumption.
> Pumped systems have high operation and maintenance costs
$>$ Systems pumping to distribution systems often have provisions to send excess water to storage reservoir(s)

Design of Transmission System

$>$ Transmission system is designed to accommodate flow for the Maximum Day Demand (MDD) of the design peroid.
\checkmark Transmission systems directly connected to distribution systems without storage reservoirs are designed for the Maximum Hourly Demand (MHD)
$>$ The smallest diameter transmission line that can be provided should has the average water demand capacity.
\checkmark Variable demand (including seasonal fluctuations) can be accommodated in storage tanks, which are usually designed to handle the daily fluctuations

Design of Transmission System

\checkmark Transmission systems are usually designed for MDD + industrial demand + fire flow capacity.
\checkmark For systems, with storage reservoirs of $20-25 \%$ of average day demand (ADD), the capacity is 1.25 times ADD.
$>$ While sizing the transmission lines, allowance is provided to the loss of carrying capacity due aging and line losses.
$>$ Flow velocity in the transmission lines should be $<1.5 \mathrm{~m} / \mathrm{sec}$.
\checkmark Provide multiple conduits if possible (for reliability).
$>$ Minimum cover ($>0.75 \mathrm{~m}$) is provided over the pipeline
\checkmark The cover must be $>$ the frost penetration depth
\checkmark It must be sufficient to support the imposed dead and live loads

Appurtenances

Valves:

> Devices used to control movement of water and/or air through pipelines by opening or closing to different extents: Commonly used types of valves are:
\checkmark Block/isolation valves (allow full flow or no flow)
\checkmark Shutoff valves (at all reasonable locations to isolate pipeline sections for repair and maintenance)
\checkmark Control valves
\checkmark Directional (or check or non-return) valves
\checkmark Pressure reducing valves
\checkmark Air valves (air release valves and vacuum breaking valves)

Appurtenances

$>$ Gauges and meters for measuring flows
$>$ Devices like surge tanks to eliminate water hammer effects
$>$ Joints to attach pipes together or to attach pipes to other devices
> Unions and couplings: provided in pipelines (to join two same dia. pipes) to facilitate repair
\checkmark couplings are cheaper than unions
> Reducers, elbows and reducing elbows, tees (for pipe size reduction, for change of flow direction)
$>$ Tees and crosses (for dividing flows)

Materials and Coating

$>$ Commonly used materials:
\checkmark Cast iron, ductile iron and mild steel
\checkmark Pre-stressed concrete, reinforced cement concrete, asbestos cement
\checkmark Polyvinyl chloride (PVC)
\checkmark Plastic pipe
> Selected pipe material should withstand the highest possible pressure in the pipeline:
\checkmark Non-metallic pipes may be used only in non-freezing climates
\checkmark Iron and steel pipes subjected to freezing must be insulated or protected
> Pipe material degradation by ultraviolet must be protected.

Factors in Selecting Pipeline Materials

> Flow Characteristics: friction head loss and flow capacity
> Pipe Strength: working pressure and bursting pressure rating should be adequate to meet the operating conditions of the system
> Durability: sufficient life expectancy considering the operating conditions and the soil conditions of the system

Factors in Selecting Pipeline Materials

$>$ Type of Soil: Select the type of pipe that suits the type of soil
\checkmark acidic soil can easily corrode G.I. pipes very rocky soil can damage plastic pipes unless properly bedded in sand
> Availability: Select locally manufactured/fabricated pipes whenever available.
> Cost of Pipes:
\checkmark Initial cost
\checkmark Installation cost

Water Distribution Systems

> Objective is to distribute adequate quantity of water at adequate pressure to individual consumers
\checkmark The treated water transmitted and/or stored is distributed
> Main elements of a water distribution systems:
\checkmark Pipe network with necessary valves and other appurtenances
\checkmark Pumping stations and Storage facilities
\checkmark Service connections with valves and fittings
\checkmark Fire hydrants (provided only on $\geq 150 \mathrm{~mm}$ size distribution lines)

Water Distribution Systems

- Layout of a distribution system is determined by:
\checkmark Size and location of water demands
\checkmark Street patterns and topography
\checkmark Location of water treatment and storage facilities
$>$ A service area can have more than one distribution systems

Requirements of Good Distribution System

> Water quality should not get deteriorated in the distribution pipes.
> It should be capable of supplying water at all the intended places with sufficient pressure head.
> It should be capable of supplying the requisite amount of water during fire fighting.
$>$ All the distribution pipes should be preferably laid one meter away or above the sewer lines.
> It should be fairly water-tight as to keep losses due to leakage to the minimum.

Layouts of Distribution System

> The distribution pipes are generally laid below the road pavements, and as such their layouts generally follow the layouts of roads.
$>$ There are in general four different types of pipe networks; any one of which either single or in combination, can be used for a particular place.

They are:
\checkmark Dead End System
\checkmark Radial System
\checkmark Grid Iron System
\checkmark Ring System

(1) Dead End System

> It is suitable for old towns and cities having no definite pattern of roads.

Dead End or Tree System

(1) Dead End System

Advantages:

\checkmark Relatively cheap.
\checkmark Determination of discharges and pressure easier due to less number of valves.

Disadvantage:

\checkmark Due to many dead ends, stagnation of water occurs in pipes.

(2) Radial System

The area is divided into different zones.
\checkmark The water is pumped into the distribution reservoir kept in the middle of each zone.
\checkmark The supply pipes are laid radially ending towards the periphery.

Advantages:
\checkmark It gives quick service.
\checkmark Stagnation does not occur.

(3) Grid-iron System

$>$ It is suitable for cities with rectangular layout, where the water mains and branches are laid in rectangles

(3) Grid-iron System

Advantages:

\checkmark Water is kept in good circulation due to the absence of dead ends.
\checkmark In the cases of a breakdown in some section, water is available from some other direction.

Disadvantage:

\checkmark Proper designing is relatively difficult.

(4) Ring System

$>$ The supply main is laid all along the peripheral roads and sub mains branch out from the mains.
$>$ This system also follows the grid iron system with the flow pattern similar in character to that of dead end system.
$>$ So, determination of the size of pipes is easy.

Ring System

Advantage:

\checkmark Water can be supplied to any point from at least two directions.

Thank You

