CHAPTER (3)

ELECTRIC FLUX

DENSITY

Electric flux (ψ_{e}):

The electric flux concept is based on the following rules:
1- Electric flux begins from (+ ve) charge and ends to (-ve) charge
2- Electric field at a point is tangent to the electric flux line passing with this point and out wide.

3- In the absence of (-ve) charge the electric flux terminates at infinity.
4- The magnitude of the electric field at a point is proportional to the magnitude of the electric flux density at this point.
5- The number of electric flux lines from a (+ ve) charge \mathbf{Q} is equal to Q in SI unit

$$
\boldsymbol{\psi}_{e}=\boldsymbol{Q}
$$

Electric flux density \vec{D} displacement vector):

In free space, the electric flux density vector $\overrightarrow{\mathbf{D}}$ is defined as

$$
\overrightarrow{\overrightarrow{\mathrm{D}}}=\widehat{a}_{n} \lim _{\Delta s \rightarrow 0} \frac{\Delta \psi_{e}}{\Delta s} C m^{-2},
$$

Where: $\Delta \psi_{e}$ equals the number of electric lines that are normal to the surface ΔS

$$
\psi_{e}=\iint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}
$$

Relation Between $\overrightarrow{\mathrm{D}}$ and $\overrightarrow{\mathrm{E}}$ due to Point Charge

If we locate a point charge \mathbf{Q} at the origin, the electric flux density $\overrightarrow{\mathrm{D}}$ can be evaluated by dividing ψ_{e} by the surface area of the sphere, thus

$$
\begin{gathered}
\overrightarrow{\mathrm{D}}=\widehat{a}_{r_{s}} \frac{\psi_{e}}{4 \pi r_{s}^{2}} \\
\overrightarrow{\mathrm{D}}=\widehat{a}_{r_{s}} \frac{Q}{4 \pi r_{s}^{2}} C m^{-2}
\end{gathered}
$$

The expression for $\overrightarrow{\mathrm{E}}$ on the surface at r_{s} due to \mathbf{Q}, is

$$
\overrightarrow{\mathrm{E}}=\widehat{a}_{r_{s}} \frac{Q}{4 \pi \varepsilon_{o} r_{s}^{2}} N C^{-1}
$$

From the expressions for $\overrightarrow{\mathrm{D}}$ and $\overrightarrow{\mathrm{E}}$, it can be seen that

$$
\overrightarrow{\mathrm{D}}=\varepsilon_{o} \overrightarrow{\mathrm{E}}
$$

The relation between $\overrightarrow{\mathrm{D}}$ and $\overrightarrow{\mathrm{E}}$ was derived using a Point charge \mathbf{Q}, but also it is valid for general charge distribution,

$$
\begin{aligned}
& \vec{E}=\iiint \frac{\rho_{v} d v}{4 \pi \varepsilon_{0} R^{2}} \widehat{a}_{R} \\
& \vec{D}=\iiint \frac{\rho_{v} d v}{4 \pi R^{2}} \widehat{a}_{R}
\end{aligned}
$$

From Faraday's experiment, it is found that, ψ_{e} and thus $\overrightarrow{\mathbf{D}}$ are independent of the dielectric media in which \mathbf{Q} is embedded.

Example:

Find the electric flux ψ_{e} that passes through the surface shown in the figure. Where:

$$
\overrightarrow{\mathrm{D}}=\left(y \widehat{a}_{x}+x \widehat{a}_{y}\right) x 10^{-2} C m^{-2}
$$

Solution

$$
\begin{aligned}
\psi_{e} & =\iint_{\mathrm{D}} \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s} \\
\psi_{e} & =\int_{0}^{2} \int_{0}^{3}\left(y \widehat{a}_{x}+x \widehat{a}_{y}\right) x 10^{-2} \cdot \widehat{a}_{y} d x d z
\end{aligned}
$$

$$
\psi_{e}=\left[\frac{x^{2}}{2}\right]_{0}^{3}[z]_{0}^{2} \times 10^{-2}=\left(\frac{9}{2} x 2\right) \times 10^{-2}=9 \times 10^{-2} C
$$

Gauss's law

As it is stated before, the total electric flux emanating from a charge $+\mathbf{Q}[\mathrm{C}]$ is equal to $\mathbf{Q}[\mathrm{C}]$ in the SI units.
The previous statement can be restated by saying that the total electric flux passing through any closed imaginary surface, enclosing the charge $\mathbf{Q}[\mathrm{C}]$, is equal to $\mathrm{Q}[\mathrm{C}]$ in the SI units.
Since the charge \mathbf{Q} is enclosed by the closed surface, so the charge \mathbf{Q} will be named as $\boldsymbol{Q}_{\text {enclosed }}$.

Gauss's law states that: the total flux out of a closed surface is equal to the net charges within the surface. This can be written in integral form as:

$$
\psi_{e}=\oiint d \psi_{e}=\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{\mathrm{ds}}=Q_{\text {enclosed }}
$$

Gauss's law is used in order to determine $\overrightarrow{\mathbf{D}}$ and then $\overrightarrow{\mathrm{E}}$ by getting \vec{D} outside the closed surface integral. This can be executed by choosing Gaussian surface that satisfies the following conditions, such that $\overrightarrow{\mathrm{D}}$ be independent of ds variables.

Conditions for Gauss's law:

1- The surface or volume contained charges must has degree of symmetry.
2- $\overrightarrow{\mathrm{D}}$ must be defined in the surface $(\overrightarrow{\mathrm{D}} \neq \infty)$.
3- $\overrightarrow{\mathrm{D}}$ must be uniform on the Gaussian surface

4- The Gaussian surface must be identical to the body contained the charge.

Note:

1- Gauss's law is not used for all cases of charges, but it can be used only for the cases where the chosen Gaussian surface satisfy the previous conditions.
2- Gauss's law is used for the following cases:

- Infinite line charges and coaxial charged cylinders
- Infinite charged sheet
- Concentric charged spheres

Example:

Find the electric flux density at a point $\mathrm{p}\left(r_{c}, \varphi, z\right)$ due to an infinite charged line of ρ_{l} at z-axis.

Solution:

(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{\boldsymbol{d s}}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=\rho_{l} L$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{L} \widehat{a}_{r_{c}}\left(r_{c} d \varphi d z\right)=2 \pi r_{c} L \mathrm{D}$
(5) $2 \pi r_{c} L \mathrm{D}=\rho_{l} L$
(6) $\overrightarrow{\mathrm{D}}=\widehat{a}_{r_{c}} \frac{\rho_{l}}{2 \pi r_{c}} C m^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{\boldsymbol{a}}_{r_{c}} \frac{\rho_{l}}{2 \pi r_{c} \varepsilon_{o}} \mathrm{~N} / C$

Example:

Find $\overrightarrow{\mathbf{D}}$ and $\overrightarrow{\mathbf{E}}$ inside and outside a sphere of radius (a) and surface charge density ρ_{s}.

Solution:

Region $1 \mathbf{r}_{\mathbf{s}}<\mathbf{a}$

(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{\boldsymbol{d s}}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=0$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{\pi} \widehat{a}_{r_{s}}\left(r_{s}^{2} \sin \theta d \theta d \varphi\right)=4 \pi r_{s}^{2} \mathrm{D}$
(5) $4 \pi r_{s}^{2} \mathrm{D}=0$
(6) $\overrightarrow{\mathrm{D}}=\widehat{a}_{r_{s}} 0 \quad C^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{a}_{r_{s}} 0 \mathrm{~N} C^{-1}$

Region $2 \mathrm{r}_{\mathrm{s}}>a$
(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=4 \pi a^{2} \rho_{s}$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{\pi} \widehat{a}_{r_{s}}\left(r_{s}^{2} \sin \theta d \theta d \varphi\right)=4 \pi r_{s}^{2} \mathrm{D}$
(5) $4 \pi r_{s}^{2} \mathrm{D}=4 \pi a^{2} \rho_{s}$
(6) $\overrightarrow{\mathrm{D}}=\widehat{a}_{r_{s}} \frac{a^{2}}{r_{s}^{2}} \rho_{s} C m^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{\boldsymbol{a}}_{r_{s}} \frac{a^{2}}{\varepsilon_{o} r_{s}^{2}} \rho_{s} N C^{-1}$

Example:

Find $\overrightarrow{\mathbf{D}}$ and $\overrightarrow{\mathbf{E}}$ in all regions for a spherical shell of radii $\boldsymbol{a}, \boldsymbol{b}$ and volume charge density $\boldsymbol{\rho}_{v}$

Solution:

Region 1 $\mathbf{r}_{\mathbf{s}}<\mathbf{a}$

(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=0$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{\boldsymbol{d s}}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{\pi} \widehat{a}_{r_{s}}\left(r_{s}^{2} \sin \theta d \theta d \varphi\right)=4 \pi r_{s}^{2} \mathrm{D}$
(5) $4 \pi r_{s}^{2} \mathrm{D}=0$
(6) $\overrightarrow{\mathrm{D}}=\widehat{a}_{r_{s}} 0 C \mathrm{~m}^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{a}_{r_{s}} 0 N C^{-1}$

Region $2 a<\mathbf{r}_{s}<b$

(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=\frac{4 \pi}{3}\left(r_{s}^{3}-a^{3}\right) \rho_{v}$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{\pi} \widehat{a}_{r_{s}}\left(r_{s}^{2} \sin \theta d \theta d \varphi\right)=4 \pi r_{s}^{2} \mathrm{D}$
(5) $4 \pi r_{s}^{2} \mathrm{D}=\frac{4 \pi}{3}\left(r_{s}^{3}-a^{3}\right) \rho_{v}$
(6) $\overrightarrow{\mathrm{D}}=\widehat{a}_{r_{s}} \frac{\left(r_{s}^{3}-a^{3}\right)}{3 r_{s}^{2}} \rho_{v} C m^{-2}$
(7) $\overrightarrow{\mathbf{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{\boldsymbol{a}}_{r_{s}} \frac{\left(r_{s}^{3}-a^{3}\right)}{3 \varepsilon_{o} r_{s}^{2}} \rho_{v} N C^{-1}$

Region 3 $\mathbf{r}_{\mathbf{s}}>b$
(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=\frac{4 \pi}{3}\left(b^{3}-a^{3}\right) \rho_{v}$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{\pi} \widehat{\mathrm{a}}_{r_{s}}\left(r_{s}^{2} \sin \theta d \theta d \varphi\right)=4 \pi r_{s}^{2} \mathrm{D}$
(5) $4 \pi r_{s}^{2} \mathrm{D}=\frac{4 \pi}{3}\left(b^{3}-a^{3}\right) \rho_{v}$
(6) $\overrightarrow{\mathrm{D}}=\widehat{\boldsymbol{a}}_{r_{s}} \frac{\left(b^{3}-a^{3}\right)}{3 r_{s}^{2}} \rho_{v} C m^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{a}_{r_{s}} \frac{\left(b^{3}-a^{3}\right)}{3 \varepsilon_{0} r_{s}^{2}} \rho_{v} N C^{-1}$

Example:

In the figure shown, find the electric field intensity in all regions.

Solution

Region $1 \mathbf{r}_{\mathbf{c}}<\mathbf{a}$
(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=0$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{L} \widehat{a}_{r_{c}}\left(r_{c} d \varphi d z\right)=2 \pi r_{c} L \mathrm{D}$
(5) $2 \pi r_{c} L \mathrm{D}=0$
(6) $\overrightarrow{\mathrm{D}}=\widehat{\boldsymbol{a}}_{r_{c}} 0 C \mathrm{~m}^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{\boldsymbol{a}}_{r_{c}} 0 \quad N C^{-1}$

Region $2 a<\mathbf{r}_{c}<b$

(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=\left(\pi r_{c}^{2}-\pi a^{2}\right) L \rho_{v}$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{L} \widehat{a}_{r_{c}}\left(r_{c} d \varphi d z\right)=2 \pi r_{c} L \mathrm{D}$
(5) $2 \pi r_{c} L \mathrm{D}=\left(\pi r_{c}^{2}-\pi a^{2}\right) L \rho_{v}$
(6) $\overrightarrow{\mathrm{D}}=\widehat{\boldsymbol{a}}_{r_{c}} \frac{\left(r_{c}^{2}-a^{2}\right)}{2 r_{c}} \boldsymbol{\rho}_{v} \quad C \mathrm{~m}^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{\boldsymbol{a}}_{r_{c}} \frac{\left(r_{c}^{2}-a^{2}\right)}{2 \varepsilon_{o} r_{c}} \rho_{v} \quad N C^{-1}$

Region $3 \mathbf{r}_{\mathbf{c}}>b$
(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=\left(\pi b^{2}-\pi a^{2}\right) L \rho_{v}$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{L} \widehat{a}_{r_{c}}\left(r_{c} d \varphi d z\right)=2 \pi r_{c} L \mathrm{D}$
(5) $2 \pi r_{c} L \mathrm{D}=\left(\pi b^{2}-\pi a^{2}\right) L \rho_{v}$
(6) $\overrightarrow{\mathrm{D}}=\widehat{\boldsymbol{a}}_{r_{c}} \frac{\left(\pi b^{2}-\pi a^{2}\right)}{2 r_{c}} \rho_{v} \quad C m^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{a}_{r_{c}} \frac{\left(\pi b^{2}-\pi a^{2}\right)}{2 \varepsilon_{o} r_{c}} \rho_{v} \quad N C^{-1}$

Example:

Find the electric field intensity in all regions for the following charge configurations:

- Point charge \mathbf{Q} is located at the center.
- Conducting sphere of radius \boldsymbol{a} and of charge ρ_{s}.
- A volume charge of ρ_{v} in a spherical shell of radii b, c.

Solution:

Region $1 r_{s}<a$
(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surfa
(3) $\boldsymbol{Q}_{\text {enclosed }}=\boldsymbol{Q}$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{\boldsymbol{d s}}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{\pi} \widehat{\mathrm{a}}_{r_{s}}\left(r_{s}^{2} \sin \theta d \theta d \varphi\right)=4 \pi r_{s}^{2} \mathrm{D}$
(5) $4 \pi r_{s}^{2} \mathrm{D}=\boldsymbol{Q}$
(6) $\overrightarrow{\mathrm{D}}=\widehat{\boldsymbol{a}}_{r_{s}} \frac{Q}{4 \pi r_{s}^{2}} C m^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{\boldsymbol{a}}_{r_{s}} \frac{Q}{4 \pi \varepsilon_{o} r_{s}^{2}} N C^{-1}$

Region $2 a<\mathbf{r}_{\mathbf{s}}<b$
(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=Q+4 \pi a^{2} \rho_{s}$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{\boldsymbol{d s}}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{\pi} \widehat{\boldsymbol{a}}_{r_{s}}\left(r_{s}^{2} \sin \theta d \theta d \varphi\right)=4 \pi r_{s}^{2} \mathrm{D}$
(5) $4 \pi r_{s}^{2} \mathrm{D}=Q+4 \pi a^{2} \rho_{s}$
(6) $\overrightarrow{\mathrm{D}}=\widehat{\boldsymbol{a}}_{r_{s}} \frac{Q+4 \pi a^{2} \rho_{s}}{4 \pi r_{s}^{2}} \quad \boldsymbol{C} \boldsymbol{m}^{-2}$
(7) $\quad \overrightarrow{\mathbf{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{\boldsymbol{a}}_{r_{s}} \frac{Q+4 \pi a^{2} \rho_{s}}{4 \pi \varepsilon_{o} r_{s}^{2}} \rho_{v} N C^{-1}$

Region $3 \mathbf{b}<\mathbf{r}_{\mathbf{s}}<c$

(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $\boldsymbol{Q}_{\text {enclosed }}=\boldsymbol{Q}+4 \pi \boldsymbol{a}^{2} \rho_{s}+\frac{4 \pi}{3}\left(r_{s}^{3}-a^{3}\right) \rho_{v}$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{\pi} \widehat{\mathrm{a}}_{r_{s}}\left(r_{s}^{2} \sin \theta d \theta d \varphi\right)=4 \pi r_{s}^{2} \mathrm{D}$
(5) $4 \pi r_{s}^{2} \mathrm{D}=Q+4 \pi a^{2} \rho_{s}+\frac{4 \pi}{3}\left(r_{s}^{3}-a^{3}\right) \rho_{v}$
(6) $\overrightarrow{\mathrm{D}}=\widehat{a}_{r_{s}} \frac{Q+4 \pi a^{2} \rho_{s}+\frac{4 \pi}{3}\left(r_{s}^{3}-a^{3}\right) \rho_{v}}{4 \pi r_{s}^{2}} \quad C m^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{a}_{r_{s}} \frac{Q+4 \pi a^{2} \rho_{s}+\frac{4 \pi}{3}\left(r_{s}^{3}-a^{3}\right) \rho_{v}}{4 \pi \varepsilon_{o} r_{s}^{2}} \quad N C^{-1}$

Region $4 \mathbf{r}_{\mathbf{s}}>c$
(1) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}$
(2) Choice of Gaussian surface
(3) $Q_{\text {enclosed }}=Q+4 \pi a^{2} \rho_{s}+\frac{4 \pi}{3}\left(b^{3}-a^{3}\right) \rho_{v}$
(4) $\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=\overrightarrow{\mathrm{D}} \cdot \int_{0}^{2 \pi} \int_{0}^{\pi} \widehat{\boldsymbol{a}}_{r_{s}}\left(r_{s}^{2} \sin \theta d \theta d \varphi\right)=4 \pi r_{s}^{2} \mathrm{D}$
(5) $4 \pi r_{s}^{2} \mathrm{D}=Q+4 \pi a^{2} \rho_{s}+\frac{4 \pi}{3}\left(b^{3}-a^{3}\right) \rho_{v}$
(6) $\overrightarrow{\mathrm{D}}=\widehat{\boldsymbol{a}}_{r_{s}} \frac{Q+4 \pi a^{2} \rho_{s}+\frac{4 \pi}{3}\left(b^{3}-a^{3}\right) \rho_{v}}{4 \pi r_{s}^{2}} \quad C m^{-2}$
(7) $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{D}} / \varepsilon_{o}=\widehat{a}_{r_{s}} \frac{Q+4 \pi a^{2} \rho_{s}+\frac{4 \pi}{3}\left(b^{3}-a^{3}\right) \rho_{v}}{4 \pi \varepsilon_{o} r_{s}^{2}} \quad N C^{-1}$

Divergence

The divergence of $\overrightarrow{\mathbf{D}}$ equals the net flux of the vector $\overrightarrow{\mathbf{D}}$ that flows outwardly through a closed surface S per unit volume (enclosed by \oiint) as the volume goes to zero.

Divergence Law

$$
\operatorname{Div} \vec{D}=\nabla \cdot \vec{D} \triangleq \lim _{\Delta v \rightarrow 0} \frac{\oiint \vec{D} \cdot \overrightarrow{d s}}{\Delta v}
$$

$$
\nabla \cdot \vec{D}=\rho_{v} \quad\left[C m^{-3}\right]
$$

The general form of the divergence can be written as

$$
\begin{aligned}
\nabla \cdot \vec{D}= & \frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \mu_{1}}\left(h_{2} h_{3} D_{\mu_{1}}\right)+\frac{\partial}{\partial \mu_{2}}\left(h_{1} h_{3} D_{\mu_{2}}\right)\right. \\
& \left.+\frac{\partial}{\partial \mu_{3}}\left(h_{1} h_{2} D_{\mu_{3}}\right)\right]
\end{aligned}
$$

Where, μ_{1}, μ_{2}, and μ_{3} are the variables of the coordinates system, and h_{1}, h_{2}, and h_{3} are the factors multiplied by the differentiable of the variables. So

For Cartesian coordinates

$$
\nabla . \vec{D}=\left[\frac{\partial}{\partial x} D_{x}+\frac{\partial}{\partial y} D_{y}+\frac{\partial}{\partial z} D_{z}\right]
$$

For Cylinderical coordinates

$$
\nabla \cdot \vec{D}=\frac{1}{r_{c}}\left[\frac{\partial}{\partial r_{c}} r_{c} D_{r_{c}}+\frac{\partial}{\partial \varphi} D_{\varphi}+\frac{\partial}{\partial z} r_{c} D_{z}\right]
$$

For Spherical coordinates
$\nabla \cdot \vec{D}=\frac{1}{r_{s}^{2} \sin \theta}\left[\frac{\partial}{\partial r_{s}}\left(r_{s}^{2} \sin \theta D_{r_{s}}\right)+\frac{\partial}{\partial \theta}\left(r_{s} \sin \theta D_{\theta}\right)+\frac{\partial}{\partial \varphi}\left(r_{s} D_{\varphi}\right)\right]$

Proof of Divergence Law

Let a cube enclosed at its center the point (x_{o}, y_{o}, z_{o}) and the electric field density \vec{D} crossing the cube surface at this point and is giving by:

$$
\vec{D}=\widehat{a}_{x} D_{x_{o}}+\widehat{a}_{y} D_{y_{o}}+\widehat{\boldsymbol{a}}_{z} D_{z_{o}}
$$

In order to express $\oiint \vec{D} \cdot \overrightarrow{d s}$ for the cube, all six faces must be taken, the direction of $\overrightarrow{d s}$ is outward since the faces are normal to the three axes. Only one component of \vec{D} will cross any two surface. Thus, It's required to
find $\oiint \vec{D} \cdot \overrightarrow{d s}$. We take at the first the surface in $+\mathbf{x}$ direction and in $-x$ direction.

$$
\begin{aligned}
& \oint \bar{D} \cdot d \bar{S}=\left(D_{X_{0}} \hat{X}+D_{y_{0}} \hat{y}+D_{z o} \hat{z}\right) \cdot \Delta y \Delta z(\hat{X}) \downarrow_{\text {left }}+D(x+\Delta x) \hat{x} \cdot \Delta y \Delta z \hat{x} \downarrow_{\text {right }} \\
& \because \mathrm{D}(\mathrm{x}+\Delta \mathrm{x})=\mathrm{D}\left(\mathrm{x}_{\mathrm{o}}\right)+\frac{\partial \mathrm{D}}{\partial \mathrm{x}} \Delta \mathrm{x}+\cdots \\
& \oint \overline{\mathrm{D}} \cdot \mathrm{~d} \overline{\mathrm{~S}}=-\mathrm{D}_{\mathrm{x}_{0}} \Delta_{\mathrm{y}} \Delta \mathrm{z}+\left[\Delta \mathrm{x}_{0} * \frac{\partial \mathrm{D}}{\partial \mathrm{x}} \Delta \mathrm{x}\right] \Delta \mathrm{y} \Delta \mathrm{z} \\
& \oint \bar{D} \cdot d \bar{S}=\frac{\partial D}{\partial x} D x \Delta y \Delta z \\
& \oint \bar{D} \cdot d \bar{S} \downarrow_{\text {backee, front }}=\frac{\partial D_{y}}{\partial y} D x \Delta y \Delta z \\
& \oint \bar{D} \cdot d \bar{S}_{\text {เop }, \text { botoom }}=\frac{\partial D_{z}}{\partial z} D_{x} \Delta y \Delta z \\
& \oint \bar{D} \cdot d \bar{S}=-D_{X_{0}} \Delta_{Y} \Delta z+\left[\Delta x_{o} * \frac{\partial D}{\partial x} \Delta x\right] \Delta y \Delta z \\
& \oint \bar{D} \cdot d \bar{S}=\frac{\partial D}{\partial x} D x \Delta y \Delta z \\
& \oint \bar{D} \cdot d \bar{S} \downarrow_{\text {backed, front }}=\frac{\partial D y}{\partial y} D x \Delta y \Delta z \\
& \oint \bar{D} \cdot d \bar{S}_{\downarrow \text { top }, \text { bottom }}=\frac{\partial D z}{\partial z} D x \Delta y \Delta z \\
& \oint \bar{D} \cdot d \bar{S}=\left(\frac{\partial D_{X}}{\partial x}+\frac{\partial D_{Y}}{\partial y}+\frac{\partial D_{Z}}{\partial z}\right) \Delta x \Delta y \Delta z \\
& \therefore \oint \bar{D} \cdot d \bar{S}=\left(\frac{\partial D_{X}}{\partial x}+\frac{\partial D_{Y}}{\partial y}+\frac{\partial D_{Z}}{\partial z}\right) \Delta v=Q \\
& \therefore \rho_{v}=\frac{Q}{\Delta v}=\frac{\partial D_{X}}{\partial x}+\frac{\partial D_{Y}}{\partial y}+\frac{\partial D_{Z}}{\partial z}=\nabla \cdot \bar{D}
\end{aligned}
$$

Example:

A charged sphere of ρ_{v} and radius a, the electric flux density \bar{D} for $r_{s}<a$ is given by: $\bar{D}=\frac{10^{-5} r_{s}}{3} \hat{r}_{s}$, and for $r_{s}>a$ is given by: $\bar{D}=\frac{10^{-5} a^{3}}{3 r_{s}^{2}}$.
Find ρ_{ν} in the previous two regions.

Solution:

$\nabla \cdot \bar{D}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial r_{s}}\left(h_{2} h_{3} D_{r s}\right)+\frac{\partial}{\partial \theta}\left(h_{1} h_{3} D_{\theta}\right)+\frac{\partial}{\partial \phi}\left(h_{1} h_{2} D_{\varphi}\right)\right]$
where: $\quad h_{1}=1, h_{2}=r_{s}, h_{3}=r_{s} \sin \theta$
for $r_{s}<a$:

$$
\begin{aligned}
& \rho_{v}=\nabla \cdot \bar{D}=\frac{1}{r_{s}^{2} \sin \theta}\left[\frac{\partial}{\partial r_{s}}\left(\frac{r_{s}^{2} \sin \theta \cdot 10^{-5} r_{s}}{3}\right)+0+0\right] \\
& \rho_{v}=\nabla \cdot \bar{D}=\frac{10^{-5}}{3 r_{s}^{2}} * 3 r_{s}^{2}=10^{-5} \mathrm{C} / \mathrm{m}^{3}
\end{aligned}
$$

for $r_{s}>a$:

$$
\rho_{v}=\nabla \cdot \bar{D}=\frac{1}{r_{s}^{2} \sin \theta}\left[\frac{\partial}{\partial r_{s}}\left(\frac{r_{s}^{2} \sin \theta \cdot 10^{-5} a^{3}}{3 r_{s}^{2}}\right)\right]+0+0=0
$$

Divergence Theorem:

$$
\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}=\iiint \rho_{v} d v
$$

From divergence law,

$$
\nabla \cdot \vec{D}=\rho_{v} \quad\left[C m^{-3}\right]
$$

So
$\oiint \overrightarrow{\mathrm{D}} \cdot \overrightarrow{d s}=Q_{\text {enclosed }}=\iiint \rho_{v} d v=\iiint \nabla \cdot \vec{D} d v$
We can transfer the surface integral into a volume integral. For the left-hand side to be equal the right hand side of divergence theorem, the following conditions must be fulfilled:

" \vec{D} Must be well behaved within the volume v and on the surface"

Note:

Well behaved means that \vec{D} and $\nabla \cdot \vec{D}$ are
continuous and defined (not infinite).

Example:

Given $\bar{D}=\frac{10 x^{3}}{3} \hat{x}$ evaluate both sides of the divergence theorem for the volume of cube 2 m on edge centered at the origin and with edges parallel to the axis.

Solution:

$$
\oint \bar{D} \cdot d \bar{S}=\int \nabla \cdot \bar{D} d v
$$

L.H.S $=\oint \bar{D} \cdot d \bar{S}$

$$
\begin{aligned}
& =\int_{-1}^{1} \int_{-1}^{1} \frac{10 x^{3}}{3} \hat{X} \cdot d y d z \hat{X} \downarrow_{X=!}+\int_{-1}^{1} \int_{-1}^{1} \frac{10 x^{3}}{3} \hat{X} \cdot d y d z \hat{X} \downarrow_{X=-!}+0+0 \\
& =\frac{10(1)^{3}}{3} \cdot 2 \cdot 2=\frac{40}{3} C \\
& =\frac{40}{3}+\frac{40}{3}=\frac{80}{3} C
\end{aligned}
$$

$$
\text { R.HIS }=\int \nabla \cdot \bar{D} d v
$$

$$
\begin{aligned}
& \therefore \nabla \cdot \bar{D}=\frac{\partial}{\partial x}\left[\frac{10 x^{3}}{3}\right]=\mathbf{1 O} x^{2} \\
& \therefore \int \nabla \cdot \bar{D} d v=\int_{-1-1-1}^{1} \int^{1} 10 x^{2} d x d y d z=10\left[\frac{x^{3}}{3}\right]_{-1}^{1} \cdot 2 \cdot 2 \\
& \quad=\frac{10}{3}[1+1] \cdot 2 \cdot 2=\frac{80}{3} C
\end{aligned}
$$

Example:

Given $\bar{D}=\frac{5 r_{s}^{2}}{4} \hat{r}_{s}$ evaluate both sides of divergence theorem for volume: $r=4 m, \theta=\frac{\pi}{4}$

Solution:

$$
\begin{aligned}
& \oint \bar{D} \cdot d \bar{S}=\int \nabla \cdot \bar{D} d v \\
& L . H . S=\oint \bar{D} \cdot d \bar{S} \\
&=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \frac{5 r_{s}^{2}}{4} \hat{r}_{s} \cdot \hat{r}_{s} r_{s}^{2} \sin \theta d \theta d \phi \downarrow_{r s=4} \\
&=\frac{5(4)^{4}}{4} \cdot \int_{0}^{\frac{\pi}{4}} \sin \theta d \theta \cdot \int_{0}^{2 \pi} d \phi=\frac{5(4)^{4}}{4}(-\cos \theta)_{0}^{\frac{\pi}{4}} \\
&=589.1 C
\end{aligned}
$$

$$
\begin{aligned}
\nabla \cdot \bar{D} & =\frac{1}{r_{s}^{2} \sin \theta} \frac{\partial}{\partial r_{s}}\left[r_{s}^{2} \sin \theta \frac{4 r_{s}^{2}}{4}\right] \\
& =\frac{5}{4 r_{s}^{2}} \cdot 4 r_{s}^{2}=5 r_{s} \\
R H S & =\int \nabla \cdot \bar{D} d v=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{4} 5 r_{s} \cdot r^{2} \sin \theta d r_{s} d \theta d \phi \\
& =\frac{5 r_{s}^{4}}{4}(-\cos \theta)_{0}^{\frac{\pi}{4}} \cdot 2 \pi=589.1 C
\end{aligned}
$$

