
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER (3) 
 

ELECTRIC FLUX 
DENSITY 

 
 

 
 
 
 
 
 
 
 

 
 
 



Electric flux (𝝍𝒆): 
 

  
The electric flux concept is based on the following rules: 
1- Electric flux begins from (+ ve) charge and ends   

to (-ve) charge 
2- Electric field at a point is tangent to the electric    

flux line passing with this point and out wide. 

 
 
3- In the absence of (-ve) charge the electric flux 

terminates at infinity. 
4- The magnitude of the electric field at a point is 

proportional  to the magnitude of the electric flux 
density at this point. 

5- The number of electric flux lines from a (+ ve) charge Q 
is equal to Q in SI unit 

 
𝝍𝒆 = 𝑸 

 
 
 
 
 
 
 



 
 
 

Electric flux density 𝑫����⃗  displacement vector): 
  

In free space, the electric flux density vector 𝐃��⃗  is defined 
as  

                           𝐃��⃗ =  𝒂�𝒏 𝒍𝒊𝒎∆𝒔→𝟎  ∆𝝍𝒆
∆𝒔

   𝑪 𝒎−𝟐   ,  
Where: ∆𝝍𝒆 equals the number of electric lines that are 

normal to the surface ∆S 
 

𝝍𝒆 =  �𝐃��⃗  .  𝒅𝒔����⃗  

 
Relation Between 𝐃��⃗  and 𝐄�⃗  due to Point Charge 
 
If we locate a point charge Q at the origin, the electric flux 
density 𝐃��⃗  can be evaluated by dividing 𝝍𝒆 by the surface area of 
the sphere, thus 
 

𝐃��⃗ = 𝒂�𝒓𝒔  

𝝍𝒆

𝟒𝝅𝒓𝒔𝟐
 

 

𝐃��⃗ = 𝒂�𝒓𝒔  

𝑸
𝟒𝝅𝒓𝒔𝟐

𝑪 𝒎−𝟐 

 
The expression for 𝐄�⃗  on the surface at 𝒓𝒔  due to Q, is 
 

𝐄�⃗ =  𝒂�𝒓𝒔  

𝑸
𝟒𝝅𝜺𝒐𝒓𝒔𝟐

  𝑵 𝑪−𝟏 

 
  



From the expressions for 𝐃��⃗   and  𝐄�⃗ , it can be seen that 
 
                                        𝐃��⃗ =  𝜺𝒐 𝐄�⃗  
 
The relation between 𝐃��⃗  and 𝐄�⃗  was derived using a Point charge Q, 
but also it is valid for general charge distribution, 
 

                        𝑬��⃗ =  ∭ 𝝆𝒗 𝒅𝒗
𝟒𝝅𝜺𝒐𝑹𝟐

 𝒂�𝑹  

𝑫��⃗ =  �
𝝆𝒗 𝒅𝒗
𝟒𝝅𝑹𝟐

 𝒂�𝑹 
 
From Faraday’s experiment, it is found that, 𝝍𝒆 and thus 𝐃��⃗  
are independent of the dielectric media in which Q is 
embedded. 
 

Example: 
 

 Find the electric flux 𝝍𝒆 that passes through the 
surface shown in the figure. Where:  
 
𝐃��⃗ =  �𝒚 𝒂�𝒙 +  𝒙 𝒂�𝒚�𝒙 𝟏𝟎−𝟐 𝑪 𝒎−𝟐 
 
  
 
 
Solution 

𝝍𝒆 =  �𝐃��⃗  .  𝒅𝒔����⃗  

𝝍𝒆 = � � �𝒚 𝒂�𝒙 +  𝒙 𝒂�𝒚�𝒙 𝟏𝟎−𝟐.
𝟑

𝟎

𝟐

𝟎

 𝒂�𝒚 𝒅𝒙𝒅𝒛 

  



      𝝍𝒆 =  �𝒙
𝟐

𝟐
�
𝟎

𝟑
[𝒛]𝟎𝟐 𝒙𝟏𝟎−𝟐 =   �𝟗

𝟐
 𝒙 𝟐�𝒙𝟏𝟎−𝟐 = 𝟗𝒙𝟏𝟎−𝟐 𝑪 

 
Gauss’s law 
 
As it is stated before, the total electric flux emanating from a 
charge + Q [C] is equal to Q [C] in the SI units. 
The previous statement can be restated by saying that the 
total electric flux passing through any closed imaginary 
surface, enclosing the charge Q [C], is equal to Q [C] in the 
SI units.  
Since the charge Q is enclosed by the closed surface, so the 
charge Q will be named as 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅. 
 
Gauss’s law states that: the total flux out of a closed 
surface is equal to the net charges within the surface.  This 
can be written in integral form as: 

 

𝝍𝒆 = �𝒅𝝍𝒆 = �𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 

Gauss’s law is used in order to determine 𝐃��⃗  and then 𝐄�⃗  by 
getting 𝐃��⃗  outside the closed surface integral. This can be 
executed by choosing Gaussian surface that satisfies the 
following conditions, such that 𝐃��⃗  be independent of ds 
variables.  
 

Conditions for Gauss’s law: 
 

1- The surface or volume contained charges must    
 has degree of symmetry. 

2- 𝐃��⃗  must be defined in the surface (𝐃��⃗  ≠  ∞). 
3- 𝐃��⃗  must be uniform on the Gaussian surface 



     4- The Gaussian surface must be identical to the  
     body contained the charge.    

 
 
Note:  
 

1-  Gauss’s law is not used for all cases of charges, but it 
can be used only for the cases where the chosen 
Gaussian surface satisfy the previous conditions. 

2-  Gauss’s law is used for the following cases: 
• Infinite line charges and coaxial charged cylinders 
• Infinite charged sheet 
• Concentric charged spheres  

 
Example: 

 

Find the electric flux density at a point p(𝒓𝒄 ,𝝋, 𝒛) due to an 
infinite charged line of 𝝆𝒍 at z-axis. 

 
Solution: 
(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
 
(2) Choice of Gaussian surface 

 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝝆𝒍 𝑳  

 

(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒄  
(𝒓𝒄  𝒅𝝋 𝒅𝒛) = 

𝑳

𝟎

𝟐𝝅

𝟎
 𝟐𝝅𝒓𝒄 𝑳𝐃 

 
(5) 𝟐𝝅𝒓𝒄 𝑳𝐃 = 𝝆𝒍 𝑳  

 
(6)   𝐃��⃗ = 𝒂�𝒓𝒄  

𝝆𝒍
𝟐𝝅𝒓𝒄  

 𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒄  
𝝆𝒍

𝟐𝝅𝒓𝒄  𝜺𝒐
    𝐍 𝑪�  
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Example: 
 

Find 𝐃��⃗  and 𝐄�⃗  inside and outside a sphere of radius (a) and 
surface charge density𝝆𝒔. 

 

Solution:  

                                                             
Region 1  𝐫𝐬  < 𝐚 
(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
(2) Choice of Gaussian surface 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝟎  
(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒔  �𝒓𝒔

𝟐𝒔𝒊𝒏 𝜽𝒅𝜽𝒅𝝋 � =  𝟒𝝅𝝅

𝟎

𝟐𝝅

𝟎
 𝒓𝒔𝟐𝐃 

(5) 𝟒𝝅𝒓𝒔𝟐𝐃 = 𝟎  
(6)   𝐃��⃗ = 𝒂�𝒓𝒔  𝟎  𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒔  𝟎  𝑵 𝑪−𝟏 

Region 2  𝐫𝐬 > 𝑎 
(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
(2) Choice of Gaussian surface 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝟒𝝅 𝒂𝟐 𝝆𝒔  

(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒔  �𝒓𝒔
𝟐𝒔𝒊𝒏 𝜽𝒅𝜽𝒅𝝋 � =  𝟒𝝅𝝅

𝟎

𝟐𝝅

𝟎
 𝒓𝒔𝟐𝐃 

(5) 𝟒𝝅𝒓𝒔𝟐𝐃 = 𝟒𝝅 𝒂𝟐 𝝆𝒔  
(6)   𝐃��⃗ = 𝒂�𝒓𝒔  

𝒂𝟐

𝒓𝒔𝟐
𝝆𝒔  𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒔  
𝒂𝟐

𝜺𝒐𝒓𝒔𝟐
𝝆𝒔  𝑵 𝑪−𝟏 



 
 

 
 
 
 
 
 

 
Example: 

 

Find 𝐃��⃗  and 𝐄�⃗  in all regions for a spherical shell of 
radii a, b and volume charge density 𝝆𝒗  
 

 
 
 
 
 
 
 
 

Solution: 
Region 1  𝐫𝐬  < 𝐚 
(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
(2) Choice of Gaussian surface 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝟎  
(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒔  �𝒓𝒔

𝟐𝒔𝒊𝒏 𝜽𝒅𝜽𝒅𝝋 � =  𝟒𝝅𝝅

𝟎

𝟐𝝅

𝟎
 𝒓𝒔𝟐𝐃 

(5) 𝟒𝝅𝒓𝒔𝟐𝐃 = 𝟎  
(6)  𝐃��⃗ = 𝒂�𝒓𝒔  𝟎  𝑪 𝒎−𝟐  

 (7)  𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒔  𝟎  𝑵 𝑪−𝟏 

a 
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Region 2  𝒂 < 𝐫𝐬 < 𝑏 
(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
(2) Choice of Gaussian surface 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝟒𝝅

𝟑
 (𝒓𝒔𝟑 − 𝒂𝟑) 𝝆𝒗 

(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒔  �𝒓𝒔
𝟐𝒔𝒊𝒏 𝜽𝒅𝜽𝒅𝝋 � =  𝟒𝝅𝝅

𝟎
𝟐𝝅
𝟎  𝒓𝒔𝟐𝐃 

(5) 𝟒𝝅𝒓𝒔𝟐𝐃 = 𝟒𝝅
𝟑

 (𝒓𝒔𝟑 − 𝒂𝟑) 𝝆𝒗 

(6) 𝐃��⃗ = 𝒂�𝒓𝒔  
(𝒓𝒔𝟑−𝒂𝟑)
𝟑𝒓𝒔𝟐

  𝝆𝒗  𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒔  
(𝒓𝒔𝟑−𝒂𝟑)
𝟑𝜺𝒐𝒓𝒔𝟐

  𝝆𝒗  𝑵 𝑪−𝟏  

Region 3  𝐫𝐬 > 𝑏 
 
(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 

 
(2) Choice of Gaussian surface 

 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝟒𝝅

𝟑
 (𝒃𝟑 − 𝒂𝟑) 𝝆𝒗 

 
(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒔  �𝒓𝒔

𝟐𝒔𝒊𝒏 𝜽𝒅𝜽𝒅𝝋 � =  𝟒𝝅𝝅
𝟎

𝟐𝝅
𝟎  𝒓𝒔𝟐𝐃 

 

(5) 𝟒𝝅𝒓𝒔𝟐𝐃 = 𝟒𝝅
𝟑

 (𝒃𝟑 − 𝒂𝟑) 𝝆𝒗 

(6)   𝐃��⃗ = 𝒂�𝒓𝒔  
(𝒃𝟑−𝒂

𝟑
)

𝟑𝒓𝒔𝟐
  𝝆𝒗  𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒔  
(𝒃𝟑−𝒂

𝟑
)

𝟑𝜺𝒐𝒓𝒔𝟐
  𝝆𝒗  𝑵 𝑪−𝟏 

 
 

 
 

 



Example: 
 

In the figure shown, find the electric field  intensity in 
all regions. 

 

 
 
 
 
 
 
 
 
 
 

Solution 
Region 1  𝐫𝐜  < 𝐚 
 

(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
 
(2) Choice of Gaussian surface 

 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝟎  

 

(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒄  
(𝒓𝒄  𝒅𝝋 𝒅𝒛) = 

𝑳

𝟎

𝟐𝝅

𝟎
 𝟐𝝅𝒓𝒄 𝑳𝐃 

 
(5) 𝟐𝝅𝒓𝒄 𝑳𝐃 = 𝟎  

 
(6)  𝐃��⃗ = 𝒂�𝒓𝒄  𝟎 𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒄  𝟎         𝑵 𝑪−𝟏 

 

b 
a 

ρV

L (I) (II) (III) 



Region 2  𝒂 < 𝐫𝐜 < 𝑏 
 
 

(1)  ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
 
(2) Choice of Gaussian surface 

 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  �𝝅𝒓𝒄𝟐 −  𝝅𝒂𝟐� 𝑳 𝝆𝒗 

 

(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒄  
(𝒓𝒄  𝒅𝝋 𝒅𝒛) = 

𝑳

𝟎

𝟐𝝅

𝟎
 𝟐𝝅𝒓𝒄 𝑳𝐃 

 
(5) 𝟐𝝅𝒓𝒄 𝑳𝐃 = �𝝅𝒓𝒄𝟐 −  𝝅𝒂𝟐� 𝑳 𝝆𝒗  

 
(6)  𝐃��⃗ = 𝒂�𝒓𝒄  

�𝒓𝒄𝟐− 𝒂𝟐�
𝟐𝒓𝒄 

𝝆𝒗   𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒄  
�𝒓𝒄𝟐− 𝒂𝟐�
𝟐𝜺𝒐𝒓𝒄 

𝝆𝒗   𝑵 𝑪−𝟏 

Region 3  𝐫𝐜 > 𝑏 
(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
 
(2) Choice of Gaussian surface 

 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  �𝝅𝒃𝟐 −  𝝅𝒂𝟐� 𝑳 𝝆𝒗 

 

(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒄  
(𝒓𝒄  𝒅𝝋 𝒅𝒛) = 

𝑳

𝟎

𝟐𝝅

𝟎
 𝟐𝝅𝒓𝒄 𝑳𝐃 

 
(5) 𝟐𝝅𝒓𝒄 𝑳𝐃 = �𝝅𝒃𝟐 −  𝝅𝒂𝟐� 𝑳 𝝆𝒗  

(6)   𝐃��⃗ = 𝒂�𝒓𝒄  
�𝝅𝒃𝟐− 𝝅𝒂𝟐�

𝟐𝒓𝒄 
𝝆𝒗   𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒄  
�𝝅𝒃𝟐− 𝝅𝒂𝟐�

𝟐𝜺𝒐𝒓𝒄 
𝝆𝒗   𝑵 𝑪−𝟏  

 
 



Example:  
 

Find the electric field intensity in all regions for the 
following charge configurations: 
- Point charge Q is located at the center. 
- Conducting sphere of radius a and of charge ρs. 
- A volume charge of ρv in a spherical shell of   
   radii b, c. 

 

 
 
 
 
 
Solution: 
Region 1  𝐫𝐬  < 𝐚 

(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
(2) Choice of Gaussian surfa 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝑸  
(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒔  �𝒓𝒔

𝟐𝒔𝒊𝒏 𝜽𝒅𝜽𝒅𝝋 � =  𝟒𝝅𝝅

𝟎

𝟐𝝅

𝟎
 𝒓𝒔𝟐𝐃 

(5) 𝟒𝝅𝒓𝒔𝟐𝐃 = 𝑸  
 (6)  𝐃��⃗ = 𝒂�𝒓𝒔  

𝑸
𝟒𝝅𝒓𝒔𝟐

  𝑪 𝒎−𝟐  

 (7)  𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒔  
𝑸

𝟒𝝅𝜺𝒐𝒓𝒔𝟐
  𝑵 𝑪−𝟏 

Region 2  𝒂 < 𝐫𝐬 < 𝑏 
(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
(2) Choice of Gaussian surface 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝑸 + 𝟒𝝅𝒂𝟐 𝝆𝒔 
(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒔  �𝒓𝒔

𝟐𝒔𝒊𝒏 𝜽𝒅𝜽𝒅𝝋 � =  𝟒𝝅𝝅
𝟎

𝟐𝝅
𝟎  𝒓𝒔𝟐𝐃 

(5) 𝟒𝝅𝒓𝒔𝟐𝐃 = 𝑸 + 𝟒𝝅𝒂𝟐 𝝆𝒔 
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(6) 𝐃��⃗ = 𝒂�𝒓𝒔  
𝑸+𝟒𝝅𝒂𝟐 𝝆𝒔
𝟒𝝅𝒓𝒔𝟐

    𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒔  
𝑸+𝟒𝝅𝒂𝟐 𝝆𝒔
𝟒𝝅𝜺𝒐𝒓𝒔𝟐

  𝝆𝒗  𝑵 𝑪−𝟏  

Region 3  𝐛 < 𝐫𝐬 < 𝑐 
 
(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
(2) Choice of Gaussian surface 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝑸 + 𝟒𝝅𝒂𝟐 𝝆𝒔 + 𝟒𝝅

𝟑
 (𝒓𝒔𝟑 − 𝒂𝟑) 𝝆𝒗 

(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒔  �𝒓𝒔
𝟐𝒔𝒊𝒏 𝜽𝒅𝜽𝒅𝝋 � =  𝟒𝝅𝝅

𝟎
𝟐𝝅
𝟎  𝒓𝒔𝟐𝐃 

(5) 𝟒𝝅𝒓𝒔𝟐𝐃 = 𝑸 + 𝟒𝝅𝒂𝟐 𝝆𝒔 + 𝟒𝝅

𝟑
 (𝒓𝒔𝟑 − 𝒂𝟑) 𝝆𝒗 

(6)   𝐃��⃗ = 𝒂�𝒓𝒔  

𝑸+𝟒𝝅𝒂𝟐 𝝆𝒔+
𝟒𝝅
𝟑  (𝒓𝒔𝟑−𝒂𝟑) 𝝆𝒗

𝟒𝝅𝒓𝒔𝟐
    𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒔  

𝑸+𝟒𝝅𝒂𝟐 𝝆𝒔+𝟒𝝅
𝟑  (𝒓𝒔𝟑−𝒂

𝟑
) 𝝆𝒗

𝟒𝝅𝜺𝒐𝒓𝒔
𝟐       𝑵 𝑪−𝟏 

Region 4  𝐫𝐬 > 𝑐 
 
(1) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 
(2) Choice of Gaussian surface 
(3) 𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  𝑸 + 𝟒𝝅𝒂𝟐 𝝆𝒔 + 𝟒𝝅

𝟑
 (𝒃𝟑 − 𝒂𝟑) 𝝆𝒗 

(4) ∯𝐃��⃗  .  𝒅𝒔����⃗ =  𝐃��⃗  .∫ ∫ 𝒂�𝒓𝒔  �𝒓𝒔
𝟐𝒔𝒊𝒏 𝜽𝒅𝜽𝒅𝝋 � =  𝟒𝝅𝝅

𝟎
𝟐𝝅
𝟎  𝒓𝒔𝟐𝐃 

(5) 𝟒𝝅𝒓𝒔𝟐𝐃 = 𝑸 + 𝟒𝝅𝒂𝟐 𝝆𝒔 + 𝟒𝝅

𝟑
 (𝒃𝟑 − 𝒂𝟑) 𝝆𝒗 

(6)   𝐃��⃗ = 𝒂�𝒓𝒔  

𝑸+𝟒𝝅𝒂𝟐 𝝆𝒔+
𝟒𝝅
𝟑

 (𝒃𝟑−𝒂
𝟑

) 𝝆𝒗

𝟒𝝅𝒓𝒔𝟐
    𝑪 𝒎−𝟐  

(7) 𝐄�⃗ =  𝐃��⃗ 𝜺𝒐� = 𝒂�𝒓𝒔  

𝑸+𝟒𝝅𝒂𝟐 𝝆𝒔+
𝟒𝝅
𝟑  (𝒃𝟑−𝒂

𝟑
) 𝝆𝒗

𝟒𝝅𝜺𝒐𝒓𝒔
𝟐       𝑵 𝑪−𝟏 

 



Divergence 
 
The divergence of 𝐃��⃗  equals the net flux of the vector 𝐃��⃗  that 
flows outwardly through a closed surface S per unit volume 
(enclosed by ∯)  as the volume goes to zero. 
 
Divergence Law 

𝑫𝒊𝒗 𝑫��⃗ =  𝛁.𝑫��⃗  ≜  𝒍𝒊𝒎∆𝒗→𝟎
∯𝑫 ����⃗  .𝒅𝒔����⃗

∆𝒗
 

 
𝛁.𝑫��⃗ =  𝝆𝒗    [𝑪𝒎−𝟑] 

 
The general form of the divergence can be written as 
 

𝛁.𝑫��⃗ =  
𝟏

𝒉𝟏𝒉𝟐𝒉𝟑
�
𝝏
𝝏𝝁𝟏

(𝒉𝟐𝒉𝟑𝑫𝝁𝟏) +
𝝏
𝝏𝝁𝟐

(𝒉𝟏𝒉𝟑𝑫𝝁𝟐)

+
𝝏
𝝏𝝁𝟑

(𝒉𝟏𝒉𝟐𝑫𝝁𝟑)� 

 
Where, 𝝁𝟏,𝝁𝟐,𝒂𝒏𝒅 𝝁𝟑 are the variables of the coordinates 

system, and 𝒉𝟏,𝒉𝟐,𝒂𝒏𝒅 𝒉𝟑 are the factors multiplied by 
the differentiable of the variables. So 
 
For Cartesian coordinates 
 

𝛁.𝑫��⃗ =  �
𝝏
𝝏𝒙𝑫𝒙 +

𝝏
𝝏𝒚𝑫𝒚 +

𝝏
𝝏𝒛𝑫𝒛� 

 
 
 



For Cylinderical coordinates 
 

𝛁.𝑫��⃗ =  
𝟏
𝒓𝒄
�
𝝏
𝝏𝒓𝒄

𝒓𝒄𝑫𝒓𝒄 +
𝝏
𝝏𝝋𝑫𝝋 +

𝝏
𝝏𝒛𝒓𝒄𝑫𝒛� 

For Spherical coordinates 
 

𝛁.𝑫��⃗ =  
𝟏

𝒓𝒔𝟐𝒔𝒊𝒏 𝜽
�
𝝏
𝝏𝒓𝒔

�𝒓𝒔𝟐𝒔𝒊𝒏 𝜽 𝑫𝒓𝒔� +
𝝏
𝝏𝜽

(𝒓𝒔𝒔𝒊𝒏𝜽 𝑫𝜽) +
𝝏
𝝏𝝋

�𝒓𝒔𝑫𝝋�� 

 
 
Proof of Divergence Law 

 
Let a cube enclosed at its center the point (xo,yo,zo) and the 

electric field density 𝐷��⃗  crossing the cube surface at this 
point and is giving by: 
 

𝐷��⃗ =  𝒂�𝒙𝑫𝒙𝒐 + 𝒂�𝒚𝑫𝒚𝒐
+ 𝒂�𝒛𝑫𝒛𝒐 

 

    

 

 

In order to express ∯𝐷 ���⃗  .𝑑𝑠����⃗  for the cube, all six faces 
must be taken, the direction of 𝑑𝑠����⃗  is outward since the 
faces are normal to the three axes. Only one component of 
𝐷 ���⃗  will cross any two surface. Thus, It’s required to 

D(x) D(x+∆x)
 

 

∆x 

dS b 



find∯𝐷 ���⃗  .𝑑𝑠����⃗ . We take at the first the surface in + x 
direction and in – x direction. 
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Example: 
 

 A charged sphere of ρv and radius a, the electric flux 

density D  for rs <  a is given by: s
s r

r
D ˆ

3
10 5−

= , 

and for rs > a is given by: 2

35

3
10

sr
aD

−

= .  

Find ρv in the previous two regions. 
 
Solution: 

 

( ) ( ) ( )







∂
∂

+
∂
∂

+
∂
∂

=⋅∇ ϕθ φθ
DhhDhhDhh

rhhh
D rs

s
213132

321

1
 

θsin,,1       :where 321 ss rhrhh ===  
 

352
2

5

52

2

/103
3
10

00
3

10sin
sin
1

:for 

mCr
r

D

rr
rr

D

ar

s
s

v

ss

ss
v

s

−
−

−

=∗=⋅∇=












++







 ⋅
∂
∂

=⋅∇=

<

ρ

θ
θ

ρ
 

 

000
3

10sin
sin
1

:>for 

2

352

2 =++


















 ⋅
∂
∂

=⋅∇=
−

s

s

ss
v

s

r
ar

rr
D

ar

θ
θ

ρ  

 
 
 
 
 
 
 
 
 
 
 

a 

ρv = ? 
ρv = ? 



Divergence Theorem: 
 

�𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  �𝝆𝒗  𝒅𝒗 

 
From divergence law,  

𝛁.𝑫��⃗ =  𝝆𝒗    [𝑪𝒎−𝟑] 
 

So 
 

�𝐃��⃗  .  𝒅𝒔����⃗ =  𝑸𝒆𝒏𝒄𝒍𝒐𝒔𝒆𝒅 =  �𝝆𝒗  𝒅𝒗 =  �∇.𝐷���⃗  𝒅𝒗 
 
We can transfer the surface integral into a volume 

integral. For the left-hand side to be equal the right 
hand side of divergence theorem, the following 
conditions must be fulfilled: 

 
“𝐷 ���⃗ Must be well behaved within the volume v and on 

the surface” 
 
Note: 

 
Well behaved means that 𝐷��⃗  and ∇.𝐷��⃗  are 
continuous and defined (not infinite). 

 
 
 
 
 
 
 
 
 



Example: 

Given xxD ˆ
3

10 3

=  evaluate both sides of the divergence 
theorem for the volume of cube 2m on edge centered at 
the origin and with edges parallel to the axis. 

 
Solution: 
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Example: 
 

 Given s
s rrD ˆ

4
5 2

=  evaluate both sides of divergence 

theorem for volume: 4
,4 πθ == mr  

 
Solution: 
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