Wireless Communications

Lecture 4 Small-Scale Fading

Propagation Characteristics

- Path Loss (includes average shadowing)
- Shadowing (due to obstructions)

• Multipath Fading

Multipath Propagation

- Multiple waves arrive at the receiver
 - Delay spread
 - Doppler shift
 - Angle spread

- Influencing factors
 - Speed of the mobile
 - Speed of surrounding objects
 - Signal bandwidth

Small-Scale Fading

- Multipath signals have <u>randomly</u> distributed amplitudes, phases, & direction of arrival
 - Vector summation (A ∠ θ) @ Rx of multipath leads to <u>constructive/destructive interference</u> as mobile Rx moves in space (time)
 - RSS can vary by <u>20–30 dB</u> over distances of only $\lambda/4$!
 - $\lambda / 4 \rightarrow \sim 5-10$ cm or 3–5 msec (for v = 40 mph)
 - Fading occurs about RSS predicted from large-scale path loss models
- Even <u>fixed</u> Tx/Rx wireless links can experience fading due to motion of objects (cars, people, trees, etc.) in surrounding environment

Mobile Radio Channel

- Physical Factors Influencing Fading in Mobile Radio Channel (MRC)
 - 1) Multipath Propagation
 - Number <u>and</u> strength of multipath signals
 - Time delay of signal arrival
 - » Large path differences \rightarrow large delay
 - Urban area w/ many buildings distributed over large spatial scale
 - » Large # of strong multipath signals with a **few** having large time delay
 - Suburb with nearby office park or shopping mall
 - $\, \ast \,$ Moderate # of strong multipath signals with small \rightarrow moderate delay times
 - Rural \rightarrow few multipath signals (LOS + ground reflection)

Mobile Radio Channel

- Physical Factors Influencing Fading in Mobile Radio Channel (MRC)
 - 2) Speed of Mobile
 - Relative motion between base station & mobile causes random frequency modulation due to Doppler shift (f_d) » $f_d = (v/\lambda) \cos \theta$
 - Multipath signals will have different f_d 's for constant v b/c of **random** arrival directions (θ) !!

Doppler Shift

 $f_d = (v/\lambda) \cos \theta$ where

v : velocity (m/s) λ : wavelength (m) θ : angle between mobile direction and arrival direction of RF energy

+ shift \rightarrow mobile moving toward S - shift \rightarrow mobile moving away from S

Mobile Radio Channel

- Physical Factors Influencing Fading in Mobile Radio Channel (MRC)
 - 3) Speed of Surrounding Objects
 - Also generates multipath signals with Doppler shift
 - Dominates small-scale fading if speed of objects > mobile speed
 - » Otherwise ignored

Mobile Radio Channel

- Physical Factors Influencing Fading in Mobile Radio Channel (MRC)
 - 4) Tx Signal Bandwidth (B_s)
 - MRC modeled as filter w/ specific bandwidth (BW)
 - Relationship between signal BW & MRC BW will determine:

a) if small-scale fading is significantb) if time distortion of signal leads to inter-symbol interference (ISI)

 Model MRC as linear filter with <u>** time-varying **</u> impulse response

- Filter model due to vector summation of random amplitudes & phases of multipath signals
- Time variation due to mobile motion \rightarrow time delay of multipath signals varies with location of Rx!
- \blacklozenge MRC has fundamental bandwidth limitation \rightarrow model as BPF

Linear filter theory

- How is unknown h(t) determined?
 - Let $x(t) = \delta(t) \rightarrow$ delta or **impulse** input then
 - $y(t) = h(t) \rightarrow$ impulse response function (IRF)
 - IRF for standard filter theory is the same regardless of when it is measured → time invariant!

How is IRF of MRC determined?

- "Channel sounding" \rightarrow Radar \rightarrow Fig. 5.6, pg. 192
- Transmit short time duration pulse (wide BW) and record multipath echoes @ Rx

- » Short duration Tx pulse \approx unit impulse $\delta(t)$!
- » Define **excess delay** time as τ where $t > \tau_o$

Channel Sounding

Figure 5.6 Direct RF channel impulse response measurement system.

◆ Amplitude <u>and</u> delay time of multipath returns
 <u>change</u> as mobile moves → MRC is time <u>variant</u>

Model multipath returns as unit impulses

$$h_b(t) = \sum_{i=0}^{N-1} a_i(t,\tau) \exp[j\theta_i(t,\tau)] \delta(\tau - \tau_i(t))$$

- $a_i \angle \overline{\theta_i}$ = amplitude & phase of multipath signals (δ)
- *N* = # of multipath components
- FFT of IRF gives spectral characteristics of channel \rightarrow frequency response! $H_b(f) = \int_{-\infty}^{-\infty} \int_{-\infty}^{-\infty$
 - MRC filter passband \rightarrow "Channel BW" or Coherence BW = B_c

Multipath Channel Parameters

Derived from multipath power delay profiles

- $P(\tau_k)$: <u>relative</u> power amplitudes of multipath signals
- Use ensemble average of many profiles in small localized area \rightarrow typically 2–6 m \rightarrow obtain **average** small-scale

Multipath Channel Parameters

Time Dispersion Parameters

• Mean excess delay $\rightarrow \overline{\tau} = \frac{\sum_{k} a_{k}^{2} \tau_{k}}{\sum_{k} a_{k}^{2}} = \frac{\sum_{k} P(\tau_{k}) \tau_{k}}{\sum_{k} P(\tau_{k})}$ • <u>**RMS delay spread**</u> $\rightarrow \sigma_{\tau} = \sqrt{\overline{\tau^{2}} - (\overline{\tau})^{2}}$ and $\overline{\tau^{2}} = \frac{\sum_{k} P(\tau_{k}) \tau_{k}^{2}}{\sum_{k} P(\tau_{k})}$

» Typical values:

- > Outdoor channel ~ $2-5 \mu sec$
- Indoor channel ~ 20–100 nsec
- Maximum excess delay (XdB): excess delay value during which multipath power levels fall XdB **below** the maximum power level
 - » Worst case delay value
- "Excess delay": all values computed <u>relative</u> to time of first signal arrival t_o (see figure on slide #10)

Time Dispersion Parameters

Figure 5.10 Example of an indoor power delay profile; rms delay spread, mean excess delay, maximum excess delay (10 dB), and threshold level are shown.

Time Dispersion Parameters

Environment	Frequency (MHz)	RMS Delay Spread (σ_{τ})	RMS Delay Spread (σ _τ) Notes	
Urban	910	1300 ns avg. 600 ns st. dev. 3500 ns max.	New York City	[Cox75]
Urban	892	10–25 μs	Worst case San Francisco	[Rap90]
Suburban	910	200–310 ns	Averaged typical case	[Cox72]
Suburban	910	1960–2110 ns	Averaged extreme case	[Cox72]
Indoor	1500	10–50 ns 25 ns median	Office building	[Sal87]
Indoor	850	270 ns max.	Office building	[Dev90a]
Indoor	1900	70–94 ns avg. 1470 ns max.	Three San Francisco buildings	[Sei92a]

Table 5.1	Typical Measured '	Values of	RMS Delay	Spread
-----------	--------------------	-----------	------------------	--------

- How do we characterize a time-varying MRC?
 - Statistical analyses must be used
- Four Key Characteristics of a Mobile Radio Channel (MRC)
 - Time Dispersion Characteristics
 - 1) RMS Multipath Delay Spread (σ_{τ})
 - 2) Coherence BW or Channel BW (B_c)
 - Frequency Dispersion Characteristics
 - 3) Doppler Spread (B_D)
 - 4) Coherent Time (T_c)

• RMS Delay Spread (σ_{τ})

- Calculated from multipath power delay profiles
- Mean Excess Delay \rightarrow average delay beyond first return weighted by return power
- RMS Delay Spread \rightarrow 1 standard deviation (SD) of delay values <u>about</u> the mean excess delay
- Statistical measures of propagation delay of <u>interfering</u> signals
 - » Desire small $\sigma_{\! au}$
 - » Typical values:
 - \succ outdoor channel ~ 1–5 µsec
 - ➢ indoor channel ~ 20−100 nsec

Figure 5.10 Example of an indoor power delay profile; rms delay spread, mean excess delay, maximum excess delay (10 dB), and threshold level are shown.

- Coherence BW or Channel BW (B_c)
 - Directly related to RMS Delay Spread
 - FFT of multipath delay profile shows frequency (spectral) characteristics of MRC
 - B_c : statistical measure of frequency range where MRC response is <u>flat</u>
 - » "Flat" = passes all frequencies with \approx equal gain & linear phase
 - » Amplitudes of different frequency components correlated

 \succ 0.5 correlation $\rightarrow B_c \approx$ 1 / 5 σ_{τ}

≥ 0.9 correlation $\rightarrow B_c \approx$ 1 / 50 σ_τ (worst case/conservative)

- Coherence BW or Channel BW (B_c)
 - FFT of multipath delay (channel IRF) gives frequency characteristics of channel
 - MRC filter passband \rightarrow Channel or Coherence BW = B_c

$$H_b(f)$$
 B_c = passband

- ***MRC has bandlimited BPF response → multipath signals are the <u>direct</u> cause***
- MRC is fundamentally a bandlimited channel
 - » Tx signals with BW > B_c will be distorted in frequency <u>and</u> time domain!!

• Coherence BW or Channel BW (B_c)

- B_c and σ_{τ} are <u>related</u> quantities that characterize timedispersive nature of MRC from multipath interference » Frequency vs. Time domain perspective for <u>same</u> phenomena
- B_c and σ_{τ} do **<u>NOT</u>** characterize time-varying nature of MRC due to motion of mobile and/or surrounding objects

- Doppler Spread (B_D) : measure of spectral broadening of Tx signal caused by motion \rightarrow i.e. Doppler shift
 - $B_D = \max$ Doppler shift = $f_{max} = v_{max} / \lambda$ (~ $B_D = 50-200$ Hz)
 - If Tx signal B_s >> B_D then <u>frequency</u> effects of Doppler spread are <u>NOT</u> important
 - Important for low bps (data rate) applications (e.g. paging)
- Coherence Time (T_c)
 - T_c : statistical measure of <u>time interval</u> over which MRC remains <u>invariant</u> \rightarrow amplitude & phase of multipath signals \approx constant
 - For digital communications $\rightarrow T_c = 0.423 / B_D$
 - Provides physical measure of how <u>fast</u> the channel conditions change » $T > T_c \rightarrow$ changing channel \rightarrow signal fluctuation/fading

Small Scale Fading

Types of Small-Scale Fading

Fading can be caused by two **<u>independent</u>** MRC propagation mechanisms:

1) Time dispersion \rightarrow multipath delay (B_c, σ_{τ}) 2) Frequency dispersion \rightarrow Doppler spread (B_D, T_c)

Small Scale Fading

- Relationship between Tx signal parameters and channel parameters lead to <u>four</u> distinct effects
- ♦ Important <u>digital</u> Tx signal parameters → symbol period & signal BW

Small Scale Fading

 B_c

 B_{s}

 f_c

1) Fading due to Multipath Delay

A) Flat Fading $\rightarrow B_s \ll B_c$ <u>or</u> $T_s \gg \sigma_{\tau}$

Signal BW << Channel BW

- » Frequency domain perspective
- » Common type of fading
- » Spectral properties of Tx signal preserved
- » Channel "gain" varies with time causing deep fades
- » Fades ~ 20–30 dB \rightarrow Rayleigh fading

1) Fading due to Multipath Delay

A) Flat Fading (continued) $T_s >> \sigma_{\tau}$???

- Symbol Period >> RMS Delay Spread
 - » All multipath signals arrive at mobile Rx within $\approx \underline{same}$ symbol period
 - ➢ No Inter-Symbol Interference (ISI)
 - » Interference <u>does</u> cause signal <u>amplitude</u> to vary from symbol to symbol
 - » Generally considered desirable!
 - > Forward link \rightarrow increase mobile Rx gain (AGC)
 - ightarrow Reverse link \rightarrow increase mobile Tx power (power control)

1) Fading due to Multipath Delay

- B) Frequency Selective Fading $\rightarrow B_s > B_c$ or $T_s < \sigma_{\tau}$
 - $B_s > B_c \rightarrow$ certain frequency components of signal attenuated B_s $B_c \rightarrow f$
 - Frequency distortion causes time domain shape of transmitted signal to be distorted as well

- 1) Fading due to Multipath Delay
 - B) Frequency Selective Fading (continued)
 - $T_s < \sigma_{\tau} ??? \rightarrow \underline{\text{delayed}}$ versions of Tx signal arrive during <u>different</u> symbol periods
 - » e.g. LOS \rightarrow "1" & multipath "0" (from prior symbol!)
 - » InterSymbol Interference \rightarrow ISI
 - » <u>Very</u> undesirable → must compensate by "equalizing" Rx signal spectrum by providing more gain @ certain frequencies
 - Very difficult to predict mobile Rx performance

- 2) Fading due to Doppler Spread
 - A) Fast Fading $\rightarrow T_s > T_c$ or $B_s < B_D$
 - $T_s > T_c$ • MRC changes within 1 symbol period
 - » Rapid amplitude fluctuations
 - $B_s < B_D$
 - » Doppler shifts significantly alter spectral BW of TX signal
 - » Signal "spreading"
 - Only occurs for low data rate applications \rightarrow large T_s
 - Uncommon in most digital communication system fades

- 2) Fading due to Doppler Spread
 - A) Slow Fading $\rightarrow T_s \ll T_c$ or $B_s \gg B_D$
 - MRC constant over many symbol periods
 - Slow amplitude fluctuations
 - » For $v = 60 \text{ mph} @ f_c = 2 \text{ GHz} \rightarrow B_D = 178 \text{ Hz}$
 - » $B_s \approx 2 \text{ kHz} >> B_D$
 - B_s almost always >> B_D for most applications

Fading Signal Distributions

- Small-scale fading often referred to as "Rayleigh fading"
 - Random amplitude fluctuations follow a Rayleigh PDF
 - Applies for <u>flat</u> fading channel <u>only</u>
 - Rayleigh PDF

$$p(r) = \begin{cases} \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) & 0 \le r \le \infty\\ 0 & r < 0 \end{cases}$$

- » σ : RMS value of Rx signal **<u>before</u>** detection (demodulation)
- » Common model for Rx signal variation
 - \succ Urban areas \rightarrow heavy clutter \rightarrow no LOS path

Raleigh PDF

$$p(r) = \begin{cases} \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) & 0 \le r \le \infty \\ 0 & r < 0 \end{cases}$$
Probability that signal exceeds predefined threshold level R
$$Prob(r > R) = \int_{R}^{\infty} p(r) dr = \exp\left(\frac{-R^2}{2\sigma^2}\right)$$

$$p(r) = \int_{R}^{\infty} p(r) dr = \exp\left(\frac{-R^2}{2\sigma^2}\right)$$

Received signal envelope voltage r (volts)

38

Fading Signal Distributions

Ricean PDF

- One dominant signal component along with weaker multipath signals
- Dominant signal \rightarrow LOS path

» Suburban or rural areas with light clutter

$$p(r) = \begin{cases} \frac{r}{\sigma^2} \exp\left(-\frac{\left(r^2 + A^2\right)}{2\sigma^2}\right) I_o\left(\frac{Ar}{\sigma^2}\right) & A \ge 0, r \ge 0\\ 0 & r < 0 & \text{A: Peak amplitude of dominant signal}\\ I_0: & \text{Modified Bessel function} \end{cases}$$

Ricean PDF

Received signal envelope voltage r (volts)