

ORTHOGRAPHIC PROJECTION

Take a minute and imagine you are shopping for a chair to go in your living room. You find the perfect one, but it is way too expensive.
Fortunately, you have a cousin that builds furniture. Maybe he can buld the char for you! Describing the chair over the phone was more than a challenge. Your cousin suggests you send him pictures of the chair from multiple angles, along with the measurements.
This experience illustrates the process that a furniture designer must go through in order for the manufacturer to create the chair as intended.
Three-dimensional drawings can be used to show the overall concept and design, but they are often not clear or detailed enough.
Orthographic drawings can help to overcome those challenges.

Purpose

- To graphically represent a 3-D object on 2-D media (paper, screen etc.).

Orthographic projection, common method of representing threedimensional objects,
usually by three two-dimensional drawings in each of which the object is viewed along parallel lines that are perpendicular to the plane of the drawing.

Concept

- A projection theory is based on 2 variables:

1) Line of sight
2) Plane of projection (image or picture plane)

- Line of sight (LOS)
is an imaginary ray of light between an observer's eye and an object.
- Plane of projection is an imaginary flat plane upon which the image created by the LOS is projected.

Summary : Types of views

Projections

View comparison

Type	Advantage	Disadvantage
Multiview drawing \square	Accurately presents object's details, i.e. size and shape.	- Require training to visualization.
Pictorial drawing	- Easy to visualize.	Shape and angle distortion Circular hole becomes ellipse Right angle becomes obtuse angle
Perspective drawing	Object looks more like what our eyes perceive.	Difficult to create Size and shape distortion

Definition

Multiview drawing is a set of related images that are created by viewing the object from a different direction.

LINE TYPES

- Visible lines

Visible lines represent visible edges and boundaries. Continuous and thick ($0.5-0.6 \mathrm{~mm}$).

- Hidden lines

Hidden lines represent hidden edges and boundaries.
Dashed and medium thick ($0.35-0.45 \mathrm{~mm}$).

- Center lines

Center lines Represent axes of symmetry. Long dash - short dash and thin (0.3 mm).

- Dimension and Extension lines

Dimension and extension lines are used to show the size of an object. In general, a dimension line is placed between two extension lines and is terminated by arrowheads, which indicates the direction and extent of the dimension.
The line type is continuous and the line weight is thin (0.3 mm). TEST:

http://www.engineeringessentials.com/ege/ortho/ortho page
5 ex1.htm

LINE TYPES

ORTHOGRAPHIC PROJECTION Drawing Steps

6. Project back to the front view if necessary.

9. Draw the right side view.

FRONT VIEW
RIGHT SIDE VIEW
10. Project back from the right side view if needed. (We don't in this case.)

RIGHT SIDE VIEW

11. Add center lines

FRONT VIEW
RIGHT SIDE VIEW

Department of Art and Design
IQRA national University, Peshawar.
Subject: Basic Drafting
Assignment \# 4

GIVEN ISOMETRIC VIEW

Draw an orthographic projection (Front, Side and Top View) of the given isometric view on $\mathbf{2 0}^{3} \times \mathbf{3 0}^{3}$ or A3 sheet.
Also Specify the dimension of the given isometric shape from your own side. Note: Draw light construction line (guidelines) for drawings and don't erase the line after completing the drawings also highlight the shape in bold line.

Video Link for demonstration.

1) https://www.youtube.com/watch?v=1sjaelzuGAk
2) https://www.youtube.com/watch?v=CACQU-Oe3rQ

THANKS

