LECTURE \# 4

In this lecture you Course Name: will learn about:
 "Surveying I"

- Instruments For Setting-

Out Right Angles

- Right Angle with Chain

Or Tape

- Obstacles In Chaining
- Examples

Course Code: CT-123
 Credit Hours: 2
 Semester: Summer 2020

Obstacles In Chaining

Various obstacles or obstructions such as wood, hills, ponds rivers etc. continually meet with the chaining. It is however necessary that chaining should be continued in a straight line.

The various obstacles may be classed as:

- A. Chaining Free, Vision Obstructed.
- B. Chaining Obstructed, Vision Free.
- C. Both Chaining and Vision Obstructed

A. Chaining Free, Vision Obstructed

Two further cases

- Case 1. Both ends are visible from intermediate point on the line (Reciprocal ranging/Indirect ranging).
- Case 2. Both ends are not visible from some intermediate point

Case 1: Indirect Ranging / Reciprocal Ranging

» Fix the two ranging rods at the given stations A and B which are not intervisible due to raising ground.
» Select two intermediate points M1 and N1 such that from each point both A and B are visible.
» The person at M 1 directs the person at N 1 to move t new position N 2 in line with M1B.
» The person at N 2 then directs the person at M 1 to move to a new position M2 in line with N2A.
» The person at M2 directs the person at N2 to a new position N3 in line with M2B.
» The person at N3 directs the person at M2 to a new position M3 in line with N3A.

Case 1: Indirect Ranging / Reciprocal Ranging

» The person at N 3 directs the person at M 2 to a new position M3 in line with N3A.
» The process is repeated till the points M and N are located in such a way that M finds the person at N in 1 with AB and the person at N finds the person at M in 1 with AB.
» After fixing the points M and N , other points are also fixed by direct ranging and the length of the line is measured.

Case 1: Indirect Ranging / Reciprocal Ranging

Result: Distance of $\mathrm{AB}=$ distance $\mathrm{AM}+$ distance $\mathrm{MN}+$ distance NB

Case 2: Both Ends Are Not Visible From Some Intermediate Point

This occurs when it is desired to run a line across a wooded field, trees or underbrush preventing the fixing of intermediate point.
Random line method is suitable.

B. Chaining Obstructed, Vision Free

For example pond, plantation, river etc.
Two further cases

- Case 1. When it is possible to chain round the obstacle e.g. pond.
- Case2. When it is not possible to chain round the obstacle e.g. River.

Case 1 . When It Is Possible To Chain Round The Obstacle

Several methods available.

Method 1

Method 2

Method 3

- Select two points A and B on line PR on each side of the obstacle. Set out a line CAD such that CB and DB clear obstacle. Measured distance AC, CB, and DB.
- Then apply cosine formula to calculate the width AB for BCD
- In \triangle BCD
$\mathrm{BD}^{2}=\mathrm{CB}^{2}+\mathrm{CD}^{2}-2 \times \mathrm{CB} \times \mathrm{CD} \times \operatorname{Cos}(\varnothing) \ldots$ (1)

Method 3

- In $\triangle \mathrm{BCA}$
- $\mathrm{AB}^{2}=\mathrm{CB}^{2}+\mathrm{CA}^{2}-2 \times \mathrm{CB} \times \mathrm{CA} \times \operatorname{Cos}(\varnothing) \ldots$. (2)
- Equating the values of $\operatorname{Cos}(\varnothing)$

$$
A B=\sqrt{\frac{\mathrm{CB}^{2} \times \mathrm{AD}+\mathrm{DB}^{2} \times \mathrm{AC}-\mathrm{AC} \times \mathrm{AD}}{\mathrm{CD}}}
$$

Case 2 . When It Is Not Possible To Chain Round The Obstacle

- Typically for rivers.

Method 1

- Select two points on chain line PR, A and
- Set out perpendicular AD. Bisect it at
- At D draw perpendicular DE such that point E becomes inline with C and B.
- Measure DE.
- $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CED}$ are similar.
- So AB=DE

Case 2 . When It Is Not Possible To Chain Round The Obstacle

Method 2

- Select two points. Setout \perp AD at A. erect $\perp \quad \mathrm{BD}$ at D , cutting chain at C .
- Measure AD and AC.
- $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$ are similar

$$
\begin{aligned}
\quad \frac{A B}{A D} & =\frac{A D}{A C} \\
\text { So } \quad A B & =\frac{A D^{2}}{C A}
\end{aligned}
$$

C. Both Chaining and Vision Obstructed

Typical example is building.
Method 1

- Select two points on chain line PR, A and B and erect $\perp \mathrm{AE}$ and BF of equal length. Prolong EF line pass the obstacle and select two
 G and H and erect \perp to chain line.
- $\mathrm{BC}=\mathrm{FG}$

Method 2

- Select point B and erect \perp BE. Mark an other point A such that $A B=B E$.
- Join AE and produce it to F . Draw
- \perp on F making FA= FD. Mark a point G on $F D$ such that $\mathrm{FG}=\mathrm{EF}$ locate C , now ${ }^{\mathrm{E}}$ measure EG.
- $\mathrm{AB}=\mathrm{EG}$

Example 1

- While chaining across a pond two points A and B were taken on opposite side of the pond. A line CB 270 m long was laid on left of AB and an other line BD was laid down on the right of line $A B$ is 315 m , such that points C, A and D becomes inline with each other. CA and AD were then measured and found to be 156 m and 174 m respectively.
- Find the length AB

Solution

$\mathrm{BD}^{2}=\mathrm{CB}^{2}+\mathrm{CD}^{2}-2 \times \mathrm{CB} \times \mathrm{CD} \times \operatorname{Cos}(\varnothing) \ldots$ (1) $\operatorname{Cos}(\varnothing)=$ $\mathrm{CB}^{2}+\mathrm{CD}^{2}-\mathrm{BD}^{2} 2 \mathrm{xCBxCD}$
$\emptyset=62^{\circ} 23^{\prime}$
$\mathrm{AB}^{2}=\mathrm{CB}^{2}+\mathrm{CA}^{2}-2 \times \mathrm{CB} \times \mathrm{CA} \times \operatorname{Cos}(\varnothing) \mathrm{AB}=244.2 \mathrm{~m}$ OR
$\mathrm{AB}=\sqrt{\frac{\mathrm{CB}^{2} \times \mathrm{AD}+\mathrm{DB}^{2} \times \mathrm{AC}}{\mathrm{CD}}-\mathrm{AC} \times \mathrm{AD}}=244.2 \mathrm{~m}$

Example 2

- A survey line AC intersect a building. To prolong the line behind the building per CD 120 m long drawn at C. From D two lines DF and DG are drawn at angle 45° and 60° respectively.
- Determine the length DF and DG and also obstructed length CF.

Solution

- $\mathrm{DG}=\mathrm{CD} \times \operatorname{Sec} 60^{\circ}=240 \mathrm{~m}$
- $\mathrm{DF}=\mathrm{CD} x \operatorname{Sec} 45^{\circ}=169.63 \mathrm{~m}$
- $\mathrm{CF}=\mathrm{CD} \tan 45^{\circ}=120 \mathrm{~m}$

