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55. Stokes Theorem 
 

Recall that Green’s Theorem allows us to find the work (as a line integral) performed on a particle 

around a simple closed loop path C by evaluating a double integral over the interior R that is 

bounded by the loop: 

 

Green′s Theorem:  ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= ∬ (𝑁𝑥 − 𝑀𝑦) 𝑑𝐴
𝑅

. 

 

Green’s Theorem is restricted to closed loop paths in 𝑅2. What about a closed loop path in 𝑅3? 

For such paths, we use Stokes Theorem, which extends Green’s Theorem into 𝑅3. 

 

If 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑀(𝑥, 𝑦, 𝑧), 𝑁(𝑥, 𝑦, 𝑧), 𝑃(𝑥, 𝑦, 𝑧)〉 is a vector field and 𝑆 is a simple oriented surface 

in 𝑅3 with a boundary C, then Stokes Theorem is given by  

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= ∬ (curl 𝐅) ⋅ 𝐧 𝑑𝑆
𝑆

. 

 

Recall that curl F is defined by 

 

curl 𝐅 = |
𝐢 𝐣 𝐤

𝜕𝑥 𝜕𝑦 𝜕𝑧

𝑀 𝑁 𝑃

| 

= (𝑃𝑦 − 𝑁𝑧)𝐢 − (𝑃𝑥 − 𝑀𝑧)𝐣 + (𝑁𝑥 − 𝑀𝑦)𝐤 

= 〈𝑃𝑦 − 𝑁𝑧 , 𝑀𝑧 − 𝑃𝑥, 𝑁𝑥 − 𝑀𝑦〉. 

 

A positive orientation of the surface is stated such that the path C is traversed counterclockwise. 

However, in 𝑅3, the notion of counterclockwise can be less intuitive. Thus, a positively-oriented 

surface is one where someone standing “up” would walk the loop with their left arm hanging over 

the surface. 
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In Green’s Theorem, the surface S is the region R in the xy-plane, and “up” is in the positive z 

direction. Since 𝐅 = 〈𝑀, 𝑁, 0〉 in 𝑅2, then curl F = 〈0,0, 𝑁𝑥 − 𝑀𝑦〉 so that Green’s Theorem is a 

special case of Stokes Theorem when limited to 𝑅2. 

 

The integral ∬ (curl 𝐅) ⋅ 𝐧 𝑑𝑆
𝑆

 needs to be expanded so that it can be useful. Suppose for now 

that the surface S is defined by 𝑧 = 𝑓(𝑥, 𝑦). From this, we have that n is a normal vector to 𝑓 by 

 

𝐧 =
〈𝑓𝑥, 𝑓𝑦, −1〉

√𝑓𝑥
2 + 𝑓𝑦

2 + 1
  or 

〈−𝑓𝑥, −𝑓𝑦, 1〉

√𝑓𝑥
2 + 𝑓𝑦

2 + 1
 . 

 

Also, recall that 𝑑𝑆 = √𝑓𝑥
2 + 𝑓𝑦

2 + 1 𝑑𝐴. Thus, making substitutions, we have 

 

∬ (curl 𝐅) ⋅ 𝐧 𝑑𝑆
𝑆

= ∬ (curl 𝐅) ⋅
〈−𝑓𝑥, −𝑓𝑦, 1〉

√𝑓𝑥
2 + 𝑓𝑦

2 + 1
 √𝑓𝑥

2 + 𝑓𝑦
2 + 1 𝑑𝐴

𝑆

. 

 

This simplifies to  

 

∬ (curl 𝐅) ⋅ 〈−𝑓𝑥, −𝑓𝑦, 1〉 𝑑𝐴.
𝑅

 

 

The vector 〈−𝑓𝑥, −𝑓𝑦, 1〉 is chosen depending on what direction “up” is stated. We may choose 

〈𝑓𝑥, 𝑓𝑦 , −1〉 in certain cases. A useful tactic is to note that if a path C is stated first, we can choose 

any surface 𝑓 that is bounded by that path. Obviously, we choose “easy” surfaces in such a case. 

 

The usual routine is as follows: 

 

You will be asked to find the value of a line integral ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

 around a simple loop path C in 𝑅3. 

Path C may be stated explicitly, or may be implied by some surface S given by 𝑧 = 𝑓(𝑥, 𝑦). You 

will also be given the vector field 𝐅 = 〈𝑀, 𝑁, 𝑃〉. 
 

1. Find curl F. For now, it will be in terms of x, y and z. 

2. Determine 〈−𝑓𝑥, −𝑓𝑦, 1〉 or 〈𝑓𝑥, 𝑓𝑦 , −1〉, depending on the context. Usually, the first version 

is used because we can always declare that positive z is “up”. 

3. Find (curl 𝐅) ⋅ 〈−𝑓𝑥, −𝑓𝑦, 1〉. If variable z remains, substitute with 𝑧 = 𝑓(𝑥, 𝑦). You now 

have an expression in terms of x and y. 

4. Determine the region of integration R, which will be the footprint cast by S onto the xy-

plane.  

5. Integrate the result in step (3) over region R. 

  

Normal adjustments would be made, e.g. if the surface was stated as 𝑥 = 𝑓(𝑦, 𝑧). 
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Example 55.1: Find ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

, where 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥𝑦, 𝑥 + 𝑦 + 𝑧, 𝑥2〉 and C is a circle of radius 

1, centered at the origin, in the xy-plane, traverse counterclockwise where “up” is the positive z 

direction. 

 

Solution: No surface S is specified, just a boundary path C. So let’s try a couple different surfaces 

that have C as its boundary. First, we will let S be the interior of the circle in the xy-plane. That is, 

𝑧 = 𝑓(𝑥, 𝑦) = 0. Thus, 𝐧 = 〈0,0,1〉. 
 

Next, we find curl F: 

 

curl 𝐅 = 〈𝑃𝑦 − 𝑁𝑧 , 𝑀𝑧 − 𝑃𝑥 , 𝑁𝑥 − 𝑀𝑦〉 = 〈−1, −2𝑥, 1 − 𝑥〉. 
 

Thus, (curl 𝐅) ⋅ 𝐧 = 1 − 𝑥. This is integrated over the region inside the circle of radius 1, centered 

at the origin. We use polar coordinates, where 𝑥 = 𝑟 cos 𝜃: 

 

∬ (curl 𝐅) ⋅ 𝐧 𝑑𝑆
𝑆

= ∬ (1 − 𝑥) 𝑑𝐴
𝑆

 

= ∫ ∫ (1 − 𝑟 cos 𝜃) 𝑟 𝑑𝑟 𝑑𝜃
1

0

2𝜋

0

 

= ∫ ∫ (𝑟 − 𝑟2 cos 𝜃) 𝑑𝑟 𝑑𝜃
1

0

2𝜋

0

. 

 

We have  

 

∫ (𝑟 − 𝑟2 cos 𝜃) 𝑑𝑟
1

0

= [
1

2
𝑟2 −

1

3
𝑟3 cos 𝜃]

0

1

=
1

2
−

1

3
cos 𝜃 . 

 

Then, we have 

 

∫ (
1

2
−

1

3
cos 𝜃)  𝑑𝜃

2𝜋

0

= [
1

2
𝜃 −

1

3
sin 𝜃]

0

2𝜋

= 𝜋. 

 

Therefore, with S as the portion of the xy-plane inside the circle of radius 1 centered at the origin, 

we have  

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= 𝜋. 
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Next, let’s try a different surface: Let S be the paraboloid 𝑧 = 𝑓(𝑥, 𝑦) = 1 − 𝑥2 − 𝑦2 that lies 

above the xy-plane. Note that C is the same bounding curve. We find n: 

 

𝐧 = 〈−𝑓𝑥, −𝑓𝑦, 1〉 = 〈−(−2𝑥), −(−2𝑦), 1〉 = 〈2𝑥, 2𝑦, 1〉. 
 

The curl F has not changed. Thus, 

 

(curl 𝐅) ⋅ 𝐧 = 〈−1, −2𝑥, 1 − 𝑥〉 ⋅ 〈2𝑥, 2𝑦, 1〉 = −3𝑥 − 4𝑥𝑦 + 1. 
 

The region of integration is the same—the interior of the circle of radius 1, centered at the origin. 

Once again, we use polar coordinates: 

 

∬ (curl 𝐅) ⋅ 𝐧 𝑑𝑆
𝑆

= ∬ (−3𝑥 − 4𝑥𝑦 + 1) 𝑑𝐴
𝑆

 

= ∫ ∫ (−3𝑟 cos 𝜃 − 4(𝑟 cos 𝜃)(𝑟 sin 𝜃) + 1) 𝑟 𝑑𝑟 𝑑𝜃
1

0

2𝜋

0

 

= ∫ ∫ (−3𝑟2 cos 𝜃 − 4𝑟3 cos 𝜃 sin 𝜃 + 𝑟) 𝑑𝑟 𝑑𝜃
1

0

2𝜋

0

. 

 

The inside integral, evaluated with respect to r, is 

 

∫ (−3𝑟2 cos 𝜃 − 4𝑟3 cos 𝜃 sin 𝜃 + 𝑟) 𝑑𝑟 𝑑𝜃
1

0

= [−𝑟3 cos 𝜃 − 𝑟4 cos 𝜃 sin 𝜃 +
1

2
𝑟2]

0

1

 

= − cos 𝜃 − cos 𝜃 sin 𝜃 +
1

2
 . 

 

Then this is integrated with respect to 𝜃: 

 

∫ (− cos 𝜃 − cos 𝜃 sin 𝜃 +
1

2
)  𝑑𝜃

2𝜋

0

= [− sin 𝜃 −
1

2
sin2 𝜃 +

1

2
𝜃]

0

2𝜋

= 𝜋. 

 

Note that at 𝜃 = 0 and 2𝜋, the sine terms vanish. Thus, we get the same result, ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= 𝜋. 

 

Try this with another surface, for example, the hemisphere of radius 1, 𝑧 = √1 − 𝑥2 − 𝑦2. 
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Example 55.2: Find ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

, where 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥 + 𝑦, 𝑧𝑦, 3𝑥〉 and C is the triangle traversed 

from (4,0,0) to (0,6,0) to (0,0,12), back to (4,0,0). Assume “up” is in the direction of positive z. 

 

Solution: Since no surface is specified, let’s use a plane passing through the vertices of the triangle. 

Below is an image of the path C and the eventual region of integration R: 

 

 
 

The plane is 
𝑥

4
+

𝑦

6
+

𝑧

12
= 1, or 3𝑥 + 2𝑦 + 𝑧 = 12 when fractions are cleared. We can read off a 

normal vector from the plane’s equation: 𝐧 = 〈3,2,1〉. This is a useful vector since it has a 1 in the 

z position, agreeing with the upward direction. We find curl F, which is 〈−𝑦, −3, −1〉. Thus, 

 

∬ (curl 𝐅) ⋅ 𝐧 𝑑𝑆
𝑆

= ∬ (−3𝑦 − 7) 𝑑𝐴
𝑅

= ∫ ∫ (−3𝑦 − 7) 𝑑𝑦
6−(3 2⁄ )𝑥

0

𝑑𝑥
4

0

. 

 

The inside integral is 

 

∫ (−3𝑦 − 7) 𝑑𝑦
6−(3 2⁄ )𝑥

0

= [−
3

2
𝑦2 − 7𝑦]

0

6−(3 2⁄ )𝑥

 

= −
3

2
(6 −

3

2
𝑥)

2

− 7 (6 −
3

2
𝑥) 

= −
27

8
𝑥2 +

75

2
𝑥 − 96. 

 

The outside integral is 

 

∫ (−
27

8
𝑥2 +

75

2
𝑥 − 96)  𝑑𝑥

4

0

= [−
9

8
𝑥3 +

75

4
𝑥2 − 96𝑥]

0

4

= −156. 

 

Therefore, ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= −156. Let’s verify this by finding the line integral along each segment of 

the triangle. 
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From (4,0,0) to (0,6,0), we have 𝐫(𝑡) = 〈4 − 4𝑡, 6𝑡, 0〉 for 0 ≤ 𝑡 ≤ 1, so that 𝑑𝐫 = 〈−4,6,0〉. 
Meanwhile,  

 

𝐅(𝑡) = 〈𝑥 + 𝑦, 𝑧𝑦, 3𝑥〉 

= 〈(4 − 4𝑡) + (6𝑡), (0)(6𝑡),3(4 − 4𝑡)〉   {
𝑥 = 4 − 4𝑡

𝑦 = 6𝑡
𝑧 = 0

 

 

or after simplification, 𝐅(𝑡) = 〈4 + 2𝑡, 0,12 − 12𝑡〉. Thus, 𝐅 ⋅ 𝑑𝐫 = −4(4 + 2𝑡) = −16 − 8𝑡, 

and the line integral is 

 

∫ (−16 − 8𝑡) 𝑑𝑡
1

0

= [−16𝑡 − 4𝑡2]0
1 = −20. 

 

From (0,6,0) to (0,0,12), we have 𝐫(𝑡) = 〈0,6 − 6𝑡, 12𝑡〉 for 0 ≤ 𝑡 ≤ 1, so that 𝑑𝐫 = 〈0, −6,12〉. 
Meanwhile, 𝐅(𝑡) = 〈6 − 6𝑡, 72𝑡 − 72𝑡2, 0〉 after simplification.  

 

Thus, 𝐅 ⋅ 𝑑𝐫 = −6(72𝑡 − 72𝑡2) = −432(𝑡 − 𝑡2), and the line integral is  

 

∫ −432(𝑡 − 𝑡2) 𝑑𝑡
1

0

= −432 [
1

2
𝑡2 −

1

3
𝑡3]

0

1

= −72 

 

From (0,0,12) to (4,0,0), we have 𝐫(𝑡) = 〈4𝑡, 0,12 − 12𝑡〉 for 0 ≤ 𝑡 ≤ 1. This gives 𝑑𝐫 =
〈4,0, −12〉. Also, 𝐅(𝑡) = 〈4𝑡, 0,12𝑡〉 after simplification. Therefore,  

 

𝐅 ⋅ 𝑑𝐫 = 4(4𝑡) − 12(12𝑡) = 16𝑡 − 144𝑡 = −128𝑡. 
 

Finally, the line integral is 

 

∫ −128𝑡 𝑑𝑡
1

0

= −128 [
1

2
𝑡2]

0

1

= −64. 

 

The sum of these three line integrals is −20 − 72 − 64 = −156, agreeing with the result found 

by Stokes Theorem.  
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