55. Stokes Theorem

Recall that Green's Theorem allows us to find the work (as a line integral) performed on a particle around a simple closed loop path C by evaluating a double integral over the interior R that is bounded by the loop:

$$
\text { Green's Theorem: } \int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}\left(N_{x}-M_{y}\right) d A .
$$

Green's Theorem is restricted to closed loop paths in R^{2}. What about a closed loop path in R^{3} ? For such paths, we use Stokes Theorem, which extends Green's Theorem into R^{3}.

If $\mathbf{F}(x, y, z)=\langle M(x, y, z), N(x, y, z), P(x, y, z)\rangle$ is a vector field and S is a simple oriented surface in R^{3} with a boundary C, then Stokes Theorem is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d S .
$$

Recall that curl \mathbf{F} is defined by

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
M & N & P
\end{array}\right| \\
& =\left(P_{y}-N_{z}\right) \mathbf{i}-\left(P_{x}-M_{z}\right) \mathbf{j}+\left(N_{x}-M_{y}\right) \mathbf{k} \\
& =\left\langle P_{y}-N_{z}, M_{z}-P_{x}, N_{x}-M_{y}\right\rangle .
\end{aligned}
$$

A positive orientation of the surface is stated such that the path C is traversed counterclockwise. However, in R^{3}, the notion of counterclockwise can be less intuitive. Thus, a positively-oriented surface is one where someone standing "up" would walk the loop with their left arm hanging over the surface.

In Green's Theorem, the surface S is the region R in the $x y$-plane, and "up" is in the positive z direction. Since $\mathbf{F}=\langle M, N, 0\rangle$ in R^{2}, then curl $\mathbf{F}=\left\langle 0,0, N_{x}-M_{y}\right\rangle$ so that Green's Theorem is a special case of Stokes Theorem when limited to R^{2}.

The integral $\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d S$ needs to be expanded so that it can be useful. Suppose for now that the surface S is defined by $z=f(x, y)$. From this, we have that \mathbf{n} is a normal vector to f by

$$
\mathbf{n}=\frac{\left\langle f_{x}, f_{y},-1\right\rangle}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}} \text { or } \frac{\left\langle-f_{x},-f_{y}, 1\right\rangle}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}} .
$$

Also, recall that $d S=\sqrt{f_{x}^{2}+f_{y}^{2}+1} d A$. Thus, making substitutions, we have

$$
\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d S=\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \frac{\left\langle-f_{x},-f_{y}, 1\right\rangle}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A
$$

This simplifies to

$$
\iint_{R}(\operatorname{curl} \mathbf{F}) \cdot\left\langle-f_{x},-f_{y}, 1\right\rangle d A
$$

The vector $\left\langle-f_{x},-f_{y}, 1\right\rangle$ is chosen depending on what direction "up" is stated. We may choose $\left\langle f_{x}, f_{y},-1\right\rangle$ in certain cases. A useful tactic is to note that if a path C is stated first, we can choose any surface f that is bounded by that path. Obviously, we choose "easy" surfaces in such a case.

The usual routine is as follows:

You will be asked to find the value of a line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ around a simple loop path C in R^{3}. Path C may be stated explicitly, or may be implied by some surface S given by $z=f(x, y)$. You will also be given the vector field $\mathbf{F}=\langle M, N, P\rangle$.

1. Find curl \mathbf{F}. For now, it will be in terms of x, y and z.
2. Determine $\left\langle-f_{x},-f_{y}, 1\right\rangle$ or $\left\langle f_{x}, f_{y},-1\right\rangle$, depending on the context. Usually, the first version is used because we can always declare that positive z is "up".
3. Find (curl \mathbf{F}) $\left\langle\left\langle-f_{x},-f_{y}, 1\right\rangle\right.$. If variable z remains, substitute with $z=f(x, y)$. You now have an expression in terms of x and y.
4. Determine the region of integration R, which will be the footprint cast by S onto the $x y$ plane.
5. Integrate the result in step (3) over region R.

Normal adjustments would be made, e.g. if the surface was stated as $x=f(y, z)$.

Example 55.1: Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\left\langle x y, x+y+z, x^{2}\right\rangle$ and C is a circle of radius 1 , centered at the origin, in the $x y$-plane, traverse counterclockwise where "up" is the positive z direction.

Solution: No surface S is specified, just a boundary path C. So let's try a couple different surfaces that have C as its boundary. First, we will let S be the interior of the circle in the $x y$-plane. That is, $z=f(x, y)=0$. Thus, $\mathbf{n}=\langle 0,0,1\rangle$.

Next, we find curl \mathbf{F} :

$$
\operatorname{curl} \mathbf{F}=\left\langle P_{y}-N_{z}, M_{z}-P_{x}, N_{x}-M_{y}\right\rangle=\langle-1,-2 x, 1-x\rangle .
$$

Thus, $(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n}=1-x$. This is integrated over the region inside the circle of radius 1, centered at the origin. We use polar coordinates, where $x=r \cos \theta$:

$$
\begin{aligned}
\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d S & =\iint_{S}(1-x) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1}(1-r \cos \theta) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(r-r^{2} \cos \theta\right) d r d \theta
\end{aligned}
$$

We have

$$
\int_{0}^{1}\left(r-r^{2} \cos \theta\right) d r=\left[\frac{1}{2} r^{2}-\frac{1}{3} r^{3} \cos \theta\right]_{0}^{1}=\frac{1}{2}-\frac{1}{3} \cos \theta
$$

Then, we have

$$
\int_{0}^{2 \pi}\left(\frac{1}{2}-\frac{1}{3} \cos \theta\right) d \theta=\left[\frac{1}{2} \theta-\frac{1}{3} \sin \theta\right]_{0}^{2 \pi}=\pi
$$

Therefore, with S as the portion of the $x y$-plane inside the circle of radius 1 centered at the origin, we have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\pi .
$$

Next, let's try a different surface: Let S be the paraboloid $z=f(x, y)=1-x^{2}-y^{2}$ that lies above the $x y$-plane. Note that C is the same bounding curve. We find \mathbf{n} :

$$
\mathbf{n}=\left\langle-f_{x},-f_{y}, 1\right\rangle=\langle-(-2 x),-(-2 y), 1\rangle=\langle 2 x, 2 y, 1\rangle .
$$

The curl \mathbf{F} has not changed. Thus,

$$
(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n}=\langle-1,-2 x, 1-x\rangle \cdot\langle 2 x, 2 y, 1\rangle=-3 x-4 x y+1
$$

The region of integration is the same - the interior of the circle of radius 1 , centered at the origin. Once again, we use polar coordinates:

$$
\begin{aligned}
\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d S & =\iint_{S}(-3 x-4 x y+1) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1}(-3 r \cos \theta-4(r \cos \theta)(r \sin \theta)+1) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(-3 r^{2} \cos \theta-4 r^{3} \cos \theta \sin \theta+r\right) d r d \theta
\end{aligned}
$$

The inside integral, evaluated with respect to r, is

$$
\begin{aligned}
\int_{0}^{1}\left(-3 r^{2} \cos \theta-4 r^{3} \cos \theta \sin \theta+r\right) d r d \theta & =\left[-r^{3} \cos \theta-r^{4} \cos \theta \sin \theta+\frac{1}{2} r^{2}\right]_{0}^{1} \\
& =-\cos \theta-\cos \theta \sin \theta+\frac{1}{2}
\end{aligned}
$$

Then this is integrated with respect to θ :

$$
\int_{0}^{2 \pi}\left(-\cos \theta-\cos \theta \sin \theta+\frac{1}{2}\right) d \theta=\left[-\sin \theta-\frac{1}{2} \sin ^{2} \theta+\frac{1}{2} \theta\right]_{0}^{2 \pi}=\pi
$$

Note that at $\theta=0$ and 2π, the sine terms vanish. Thus, we get the same result, $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\pi$.
Try this with another surface, for example, the hemisphere of radius $1, z=\sqrt{1-x^{2}-y^{2}}$.

Example 55.2: Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\langle x+y, z y, 3 x\rangle$ and C is the triangle traversed from $(4,0,0)$ to $(0,6,0)$ to $(0,0,12)$, back to $(4,0,0)$. Assume "up" is in the direction of positive z.

Solution: Since no surface is specified, let's use a plane passing through the vertices of the triangle. Below is an image of the path C and the eventual region of integration R :

The plane is $\frac{x}{4}+\frac{y}{6}+\frac{z}{12}=1$, or $3 x+2 y+z=12$ when fractions are cleared. We can read off a normal vector from the plane's equation: $\mathbf{n}=\langle 3,2,1\rangle$. This is a useful vector since it has a 1 in the z position, agreeing with the upward direction. We find curl \mathbf{F}, which is $\langle-y,-3,-1\rangle$. Thus,

$$
\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d S=\iint_{R}(-3 y-7) d A=\int_{0}^{4} \int_{0}^{6-(3 / 2) x}(-3 y-7) d y d x
$$

The inside integral is

$$
\begin{aligned}
\int_{0}^{6-(3 / 2) x}(-3 y-7) d y & =\left[-\frac{3}{2} y^{2}-7 y\right]_{0}^{6-(3 / 2) x} \\
& =-\frac{3}{2}\left(6-\frac{3}{2} x\right)^{2}-7\left(6-\frac{3}{2} x\right) \\
& =-\frac{27}{8} x^{2}+\frac{75}{2} x-96
\end{aligned}
$$

The outside integral is

$$
\int_{0}^{4}\left(-\frac{27}{8} x^{2}+\frac{75}{2} x-96\right) d x=\left[-\frac{9}{8} x^{3}+\frac{75}{4} x^{2}-96 x\right]_{0}^{4}=-156
$$

Therefore, $\int_{C} \mathbf{F} \cdot d \mathbf{r}=-156$. Let's verify this by finding the line integral along each segment of the triangle.

From $(4,0,0)$ to $(0,6,0)$, we have $\mathbf{r}(t)=\langle 4-4 t, 6 t, 0\rangle$ for $0 \leq t \leq 1$, so that $d \mathbf{r}=\langle-4,6,0\rangle$. Meanwhile,

$$
\begin{aligned}
\mathbf{F}(t) & =\langle x+y, z y, 3 x\rangle \\
& =\langle(4-4 t)+(6 t),(0)(6 t), 3(4-4 t)\rangle\left\{\begin{array}{c}
x=4-4 t \\
y=6 t \\
z=0
\end{array}\right.
\end{aligned}
$$

or after simplification, $\mathbf{F}(t)=\langle 4+2 t, 0,12-12 t\rangle$. Thus, $\mathbf{F} \cdot d \mathbf{r}=-4(4+2 t)=-16-8 t$, and the line integral is

$$
\int_{0}^{1}(-16-8 t) d t=\left[-16 t-4 t^{2}\right]_{0}^{1}=-20
$$

From $(0,6,0)$ to $(0,0,12)$, we have $\mathbf{r}(t)=\langle 0,6-6 t, 12 t\rangle$ for $0 \leq t \leq 1$, so that $d \mathbf{r}=\langle 0,-6,12\rangle$. Meanwhile, $\mathbf{F}(t)=\left\langle 6-6 t, 72 t-72 t^{2}, 0\right\rangle$ after simplification.

Thus, $\mathbf{F} \cdot d \mathbf{r}=-6\left(72 t-72 t^{2}\right)=-432\left(t-t^{2}\right)$, and the line integral is

$$
\int_{0}^{1}-432\left(t-t^{2}\right) d t=-432\left[\frac{1}{2} t^{2}-\frac{1}{3} t^{3}\right]_{0}^{1}=-72
$$

From $(0,0,12)$ to $(4,0,0)$, we have $\mathbf{r}(t)=\langle 4 t, 0,12-12 t\rangle$ for $0 \leq t \leq 1$. This gives $d \mathbf{r}=$ $\langle 4,0,-12\rangle$. Also, $\mathbf{F}(t)=\langle 4 t, 0,12 t\rangle$ after simplification. Therefore,

$$
\mathbf{F} \cdot d \mathbf{r}=4(4 t)-12(12 t)=16 t-144 t=-128 t
$$

Finally, the line integral is

$$
\int_{0}^{1}-128 t d t=-128\left[\frac{1}{2} t^{2}\right]_{0}^{1}=-64
$$

The sum of these three line integrals is $-20-72-64=-156$, agreeing with the result found by Stokes Theorem.

