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55. Stokes Theorem

Recall that Green’s Theorem allows us to find the work (as a line integral) performed on a particle
around a simple closed loop path C by evaluating a double integral over the interior R that is
bounded by the loop:

Green's Theorem: f F.-dr= ff (N, — M,) dA.
c R

Green’s Theorem is restricted to closed loop paths in R?. What about a closed loop path in R3?
For such paths, we use Stokes Theorem, which extends Green’s Theorem into R3.

IfF(x,y,2z) = (M(x,y,z),N(x,y,2),P(x,y,z)) is avector field and S is a simple oriented surface
in R® with a boundary C, then Stokes Theorem is given by

j F-dr=ff (curl F) - ndsS.
c s

Recall that curl F is defined by

i j Kk
curlF =10, 9, 0,
M N P

= (B, — N,)i— (B, — Mp)j + (N, — M,k
= (B, — N;,M, — P, Ny — M,).

A positive orientation of the surface is stated such that the path C is traversed counterclockwise.
However, in R3, the notion of counterclockwise can be less intuitive. Thus, a positively-oriented
surface is one where someone standing “up” would walk the loop with their left arm hanging over
the surface.

C: boundary (loop)
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In Green’s Theorem, the surface S is the region R in the xy-plane, and “up” is in the positive z
direction. Since F = (M, N, 0) in R?, then curl F = (0,0, N, — M,) so that Green’s Theorem is a
special case of Stokes Theorem when limited to R2.

The integral || fs (curl F) - n dS needs to be expanded so that it can be useful. Suppose for now
that the surface S is defined by z = f(x, y). From this, we have that n is a normal vector to f by

_ (f;c;fy;_1> <_fx' _fy; 1)
n= or .
VE+RF+1T R+ +1

Also, recall that dS = |/f;2 + f,? + 1 dA. Thus, making substitutions, we have

o S h) [T
-f-fs (curl F) ndS—fL (curl F) m £+ ff +1dA.

This simplifies to

HR (curl F) - (—f,, —f,, 1) dA.

The vector (—f,, —f,, 1) is chosen depending on what direction “up” is stated. We may choose
(fx, fy» —1) in certain cases. A useful tactic is to note that if a path C is stated first, we can choose
any surface f that is bounded by that path. Obviously, we choose “easy” surfaces in such a case.

The usual routine is as follows:

You will be asked to find the value of a line integral fc F - dr around a simple loop path C in R3.

Path C may be stated explicitly, or may be implied by some surface S given by z = f(x,y). You
will also be given the vector field F = (M, N, P).

1. Find curl F. For now, it will be in terms of x, y and z.

2. Determine (—f, —fy, 1) or {f, f,,, —1), depending on the context. Usually, the first version
is used because we can always declare that positive z is “up”.

3. Find (curl F) - {(—f,, —f,, 1). If variable z remains, substitute with z = f(x,y). You now
have an expression in terms of x and y.

4. Determine the region of integration R, which will be the footprint cast by S onto the xy-

lane.
5. f)ntegrate the result in step (3) over region R.

Normal adjustments would be made, e.g. if the surface was stated as x = f(y, z).
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Example 55.1: Find fc F - dr, where F(x,y,z) = (xy,x + vy + z,x%) and C is a circle of radius
1, centered at the origin, in the xy-plane, traverse counterclockwise where “up” is the positive z
direction.

Solution: No surface S is specified, just a boundary path C. So let’s try a couple different surfaces
that have C as its boundary. First, we will let S be the interior of the circle in the xy-plane. That is,
z = f(x,y) = 0. Thus, n = (0,0,1).

Next, we find curl F:

curl F = (P, = N;,,M, — P,,N, — M,)) = (—1,-2x,1 — x).

Thus, (curl F) - n = 1 — x. This s integrated over the region inside the circle of radius 1, centered
at the origin. We use polar coordinates, where x = r cos 6:

.ff (curlF)-ndSsz (1—-x)dA
s s

2w 1
=f f (1—rcos@)rdrdb
o Jo

2w 1
= f f (r —r%cos@)dr deb.
o Jo

We have

1 1

1 1
1 1
f (r —r%cosB) drz[—rz——r3c050] = —cos .
0 2 3 0

T2

Then, we have

w1 q 1 1 m
J;) (2 3COS ) ) 3Sll’l . T

Therefore, with S as the portion of the xy-plane inside the circle of radius 1 centered at the origin,
we have

f F-dr =m.
c
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Next, let’s try a different surface: Let S be the paraboloid z = f(x,y) = 1 — x? — y? that lies
above the xy-plane. Note that C is the same bounding curve. We find n:

n = (—f,—f,, 1) = (=(=2x),—(=2y),1) = (2x, 2y, 1).
The curl F has not changed. Thus,
(curl F) ‘n=(-1,-2x,1 —x) - (2x,2y,1) = —3x — 4xy + 1.

The region of integration is the same—the interior of the circle of radius 1, centered at the origin.
Once again, we use polar coordinates:

ff (curlF)-ndSsz (—3x—4xy+1)dA
* gn 1
= j f (—=3rcos@ —4(rcosB)(rsinf) + 1) r dr dé
o Jo

2w 1
= j f (—3r2cosO — 4r3cosOsin @ +r) dr db.
o Jo

The inside integral, evaluated with respect to r, is

1 1 1
j (=3r%2cos@ —4r3cosOsinf +r) drdf = [—r3 cos@ —r*cosOsinb +zr2
0 0
1
= —cosf —cosBsinb +§.

Then this is integrated with respect to 6:
21 1 1 1 21
f (—cosH—cosHsinH+—) d0=[—sin0——sin29+—9] =T
0 2 2 2 1y

Note that at & = 0 and 2, the sine terms vanish. Thus, we get the same result, fC F-dr=m.

Try this with another surface, for example, the hemisphere of radius 1, z = /1 — x2 — y2.
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Example 55.2: Find fC F - dr, where F(x,y,z) = (x + v, zy, 3x) and C is the triangle traversed
from (4,0,0) to (0,6,0) to (0,0,12), back to (4,0,0). Assume “up” is in the direction of positive z.

Solution: Since no surface is specified, let’s use a plane passing through the vertices of the triangle.
Below is an image of the path C and the eventual region of integration R:

Z

(0.0.12)

(0,6)

(4.0.0) (4.0)

X

The plane is z + % + 12—2 =1, or 3x + 2y + z = 12 when fractions are cleared. We can read off a

normal vector from the plane’s equation: n = (3,2,1). This is a useful vector since it has a 1 in the
z position, agreeing with the upward direction. We find curl F, which is (—y, —3, —1). Thus,

ffs (curl F) - ndS = ﬂR (=3y—7)dA = f; K_G/Z)x(—sy —7) dy dx.

The inside integral is

6—(3/2)x 3 6—(3/2)x
j (-3y—7)dy = ——y2—7y]
0 2 0
- 2s-3x) ~7(6-3%)
-T2 2% 2%
_ 2, T
= 8 X 2 X .

The outside integral is

[[(-Z s B m06) ar = |- 2 4 2t 06 = 156
. 8x Zx X = 8x 4x xO— .

Therefore, | ¢ F-dr=—156. Let’s verify this by finding the line integral along each segment of
the triangle.
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From (4,0,0) to (0,6,0), we have r(t) = (4 — 4t,6t,0) for 0 <t <1, so that dr = (—4,6,0).
Meanwhile,

F(t) = (x +y,2y,3x)
x =4—-4t
= ((4 — 4t) + (6t), (0)(6t),3(4 — 4t)) y =6t
z=0
or after simplification, F(t) = (4 + 2t,0,12 — 12t). Thus, F-dr = —4(4 + 2t) = —16 — 8t,
and the line integral is
1
f (—16 — 8t) dt = [—16t — 4t2]} = —20.
0
From (0,6,0) to (0,0,12), we have r(t) = (0,6 — 6t,12t) for 0 < t < 1, so that dr = (0, —6,12).
Meanwhile, F(t) = (6 — 6t, 72t — 72t2, 0) after simplification.

Thus, F - dr = —6(72t — 72t?) = —432(t — t2), and the line integral is

1

1 1 1
f —432(t — t?) dt = —432 [— t2 — —t3] = -72
o 27 3 1y

From (0,0,12) to (4,0,0), we have r(t) = (4t,0,12 —12t) for 0 <t < 1. This gives dr =
(4,0, —12). Also, F(t) = (4t, 0,12t) after simplification. Therefore,

F-dr = 4(4t) — 12(12t) = 16t — 144t = —128¢.

Finally, the line integral is
1 1 1
J —128t dt = —128 [— tz] = —64.
0 2 0

The sum of these three line integrals is —20 — 72 — 64 = —156, agreeing with the result found
by Stokes Theorem.
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