
Lecture 10: 
Line Integral and Potential of Point Charge 

 
 
Related YouTube Video Link: 

1) https://www.youtube.com/watch?v=C7jjaqt7E-A 

2) https://www.youtube.com/watch?v=uVDriEyIRg0 

3) https://www.youtube.com/watch?v=wBJvbww6EiY 

4) https://www.youtube.com/watch?v=p8OSoburdt0 

5) https://www.youtube.com/watch?v=Mltwn2G8Ors 
 
 

Read 4.1 till 4.4 of the Given Book 
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The Line Integral 

 

 The integral expression of previous equation is an example of a line 
integral, taking the form of integral along a prescribed path. 
 
 

 
 

  Without using vector notation, we should have to write:

  alThe Line Integr 
 

 
•  E

L
: component of E along d  L

 
 L 

 The work involved in moving a charge Q from B to A is approximately: 
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 If we assume that the electric field is uniform, 

 
 
 
 
 
 
 
 
 
 
 
 Therefore, 
 
 
 
 
 
 Since the summation can be interpreted as a line integral, the exact result for the 

uniform field can be obtained as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 For the case of uniform E, W does not depend on the     
     particular path selected along which the charge is carried 

 
 
 
 Example 
 Given the nonuniform field E = yax + xay +2az, determine the work 
expended in carrying 2 C from B(1,0,1) to A(0.8,0.6,1) along the shorter arc of the 
circle x2 + y2 = 1, z = 1. 
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                          Differential path, rectangular coordinate 
 
 
 
 
 
 
 
 
 
 
 
 
Circle equation:  
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Work and Path Near an Infinite Line Charge 
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The Potential Field of a Point Charge 
 
 
 
 In previous section we found an expression for the potential difference between 

two points located at r  = r
A
 and r = r

B
 in the field of a point charge Q placed at 

the origin: 
 
 
 

 
 
                                                                

 
 
 
 Any initial and final values of θ or Φ will not affect the answer. As long as the 

radial distance between r
A
 and r

B
 is constant, any complicated path between two 

points will not change the results. 
 

 This is because although dL has r, θ, and Φ components, the electric field E 
only has the radial r component. 

 
 The potential difference between two points in the field of a point charge 

depends only on the distance of each point from the charge. 
 

 Thus, the simplest way to define a zero reference for potential in this case is to 
let V = 0 at infinity. 

 

 As the point r = r
B
 recedes to infinity, the potential at r

A
 becomes: 
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  Generally,
 
 
 
 
 
 

 Physically, Q/4πε
0
r  joules of work must be done in carrying  1 coulomb 

charge from infinity to any point in a distance of r meters from the charge Q. 
 
 

 We can also choose any point as a zero reference: 
 
 
 
 
 
 

                      with C
1

  may be selected so that V = 0 at any desired value of r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0

1 1

4 4
AB

A B

Q Q
V

r r 
 

0 0

1 1

4 4
AB

A

Q Q
V

r 
 



0

1

4
AB A

A

Q
V V

r
 

04

Q
V

r


1

04

Q
V C

r
 



 

Equipotential Surface 
 
 
 

 Equipotential surface is a surface composed of all those points having the 
same value of potential. 
 

 No work is involved in moving a charge around on an equipotential surface. 
 
 

 The equipotential surfaces in the potential field of a point charge are spheres 
centered at the point charge. 
 

 The equipotential surfaces in the potential field of a line charge are 
cylindrical surfaces axed at the line charge.  
 
 

 The equipotential surfaces in the potential field of a sheet of charge are 
surfaces parallel with the sheet of charge. 

 


