Lecture 10:
 Line Integral and Potential of Point Charge

- Related YouTube Video Link:

1) https://www.youtube.com/watch?v=C7jiaqt7E-A
2) https://www.youtube.com/watch?v=uVDriEyIRg0
3) https://www.youtube.com/watch?v=wBJvbww6EiY
4) $\mathrm{https}: / / \mathrm{www} . y o u t u b e . c o m / w a t c h ? v=p 8 O$ Soburdt0
5) https://www.youtube.com/watch?v=Mltwn2G8Ors

- Read 4.1 till 4.4 of the Given Book

Lecture Notes on next Page

The Line Integral

- The integral expression of previous equation is an example of a line integral, taking the form of integral along a prescribed path.

- Without using vector notation, we should have to write:

$$
W=-Q \int_{\text {init }}^{\text {final }} E_{L} d L
$$

- E_{L} : component of E along $d \mathrm{~L}$
- The work involved in moving a charge Q from B to A is approximately:

$$
\begin{aligned}
& W=-Q\left(E_{L 1} \Delta L_{1}+E_{L 2} \Delta L_{2}+\cdots+E_{L 6} \Delta L_{6}\right) \\
& W=-Q\left(\mathbf{E}_{1} \cdot \Delta \mathbf{L}_{1}+\mathbf{E}_{2} \cdot \Delta \mathbf{L}_{2}+\cdots+\mathbf{E}_{6} \cdot \Delta \mathbf{L}_{6}\right)
\end{aligned}
$$

- If we assume that the electric field is uniform,

$$
\begin{aligned}
& \mathbf{E}_{1}=\mathbf{E}_{2}=\cdots=\mathbf{E}_{6} \\
& W=-Q \mathbf{E} \cdot\left(\Delta \mathbf{L}_{1}+\Delta \mathbf{L}_{2}+\cdots+\Delta \mathbf{L}_{6}\right) \\
& \mathbf{L}_{B A}
\end{aligned}
$$

- Therefore,

$$
W=-Q \mathbf{E} \cdot \mathbf{L}_{B A} \quad(\text { uniform } \mathbf{E})
$$

- Since the summation can be interpreted as a line integral, the exact result for the uniform field can be obtained as:

$$
\begin{aligned}
& W=-Q \int_{B}^{A} \mathbf{E} \cdot d \mathbf{L} \\
& W=-Q \mathbf{E} \cdot \int_{B}^{A} d \mathbf{L} \quad(\text { uniform } \mathbf{E}) \\
& \left.W=-Q \mathbf{E} \cdot \mathbf{L}_{B A} \quad \text { (uniform } \mathbf{E}\right)
\end{aligned}
$$

- For the case of uniform E, W does not depend on the particular path selected along which the charge is carried
- Example

Given the nonuniform field $\mathrm{E}=\mathrm{yax}+$ xay +2 az , determine the work expended in carrying 2 C from $\mathrm{B}(1,0,1)$ to $\mathrm{A}(0.8,0.6,1)$ along the shorter arc of the circle $\mathrm{x} 2+\mathrm{y} 2=1, \mathrm{z}=1$.

$$
d \mathbf{L}=d x \mathbf{a}_{x}+d y \mathbf{a}_{y}+d z \mathbf{a}_{z}
$$

$$
\begin{aligned}
W & =-Q \int_{B}^{\text {Affrentidpath, rectangular coordinate }} \\
& =-Q \int_{B}^{A}\left(y \mathbf{a}_{x}+x \mathbf{a}_{y}+2 \mathbf{a}_{z}\right) \cdot\left(d x \mathbf{a}_{x}+d y \mathbf{a}_{y}+d z \mathbf{a}_{z}\right) \\
& =-2 \int_{1}^{0.8} y d x-2 \int_{0}^{0.6} x d y-2 \int_{1}^{1} 2 d z
\end{aligned}
$$

Circle equation:

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& x=\sqrt{1-y^{2}} \\
& y=\sqrt{1-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& W=-2 \int_{1}^{0.8} \sqrt{1-x^{2}} d x-2 \int_{0}^{0.6} \sqrt{1-y^{2}} d y-2 \int_{1}^{1} 2 d z \\
& =-2\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{1}^{0.8}-2\left[\frac{y}{2} \sqrt{1-y^{2}}+\frac{1}{2} \sin ^{-1} y\right]_{0}^{0.6} \\
& =\underline{\underline{-0.962 ~ J}} \\
& \quad \int \sqrt{a^{2}-u^{2}} d u=\frac{u}{2} \sqrt{a^{2}-u^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{u}{a}
\end{aligned}
$$

Work and Path Near an Infinite Line Charge

$$
\begin{aligned}
\mathbf{E} & =E_{\rho} \mathbf{a}_{\rho}=\frac{\rho_{L}}{2 \pi \varepsilon_{0} \rho} \mathbf{a}_{\rho} \\
d \mathbf{L} & =d \rho \mathbf{a}_{\rho}+\rho d \phi \mathbf{a}_{\phi}+d z \mathbf{a}_{z} \\
W & =-Q \int_{\text {init }}^{\text {final }} \frac{\rho_{L}}{2 \pi \varepsilon_{0} \rho_{1}} \mathbf{a}_{\rho} \cdot \rho_{1} d \phi \mathbf{a}_{\phi} \\
& =-Q \int_{\text {init }}^{\text {final }} \frac{\rho_{L}}{2 \pi \varepsilon_{0}} d \phi \mathbf{a}_{\rho} \cdot \mathbf{a}_{\phi} \\
& =\mathbf{O}
\end{aligned}
$$

The Potential Field of a Point Charge

- In previous section we found an expression for the potential difference between two points located at $r=r_{A}$ and $r=r_{B}$ in the field of a point charge Q placed at the origin:

$$
\begin{gathered}
V_{A B}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{A}}-\frac{1}{r_{B}}\right)=V_{A}-V_{B} \\
V_{A B}=-\int_{r_{B}}^{r_{A}} E_{r} d r
\end{gathered}
$$

- Any initial and final values of θ or Φ will not affect the answer. As long as the radial distance between r_{A} and r_{B} is constant, any complicated path between two points will not change the results.
- This is because although $d \mathbf{L}$ has r, θ, and Φ components, the electric field \mathbf{E} only has the radial r component.
- The potential difference between two points in the field of a point charge depends only on the distance of each point from the charge.
- Thus, the simplest way to define a zero reference for potential in this case is to let $V=0$ at infinity.
- As the point $r=r_{B}$ recedes to infinity, the potential at r_{A} becomes:

$$
V_{A B}=V_{A}-V_{B}
$$

$$
\begin{gathered}
V X_{B A \bar{F} \bar{F}}=\frac{Q Q_{1}}{4 \pi A \pi \varepsilon_{\theta_{a}}} \frac{1}{r_{A}} \underbrace{Q Q_{1}} \frac{1}{2 \pi \varepsilon_{60}} \frac{1}{\infty} \\
V_{A B}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r_{A}}=V_{A}
\end{gathered}
$$

- Generally,

$$
V=\frac{Q}{4 \pi \varepsilon_{0} r}
$$

- Physically, $Q / 4 \pi \varepsilon_{0} r$ joules of work must be done in carrying 1 coulomb charge from infinity to any point in a distance of r meters from the charge Q.
- We can also choose any point as a zero reference:

$$
V=\frac{Q}{4 \pi \varepsilon_{0} r}+C_{1}
$$

with C_{1} may be selected so that $V=0$ at any desired value of r

Equipotential Surface

- Equipotential surface is a surface composed of all those points having the same value of potential.
- No work is involved in moving a charge around on an equipotential surface.
- The equipotential surfaces in the potential field of a point charge are spheres centered at the point charge.
- The equipotential surfaces in the potential field of a line charge are cylindrical surfaces axed at the line charge.
- The equipotential surfaces in the potential field of a sheet of charge are surfaces parallel with the sheet of charge.

