FIELD EVALUATIONS

Methods of Explorations

Excavations

- Drilling
- Test Pits
- Sampling
- Geophysical Testing
 - Surface Seismic
 - Electrical Resistivity

FIELD INVESTIGATION

GEOPHYSICAL TESTING

0

Geophysical Exploration consists of making indirect measurements

> from the earth's surface or in borehole

> to obtain subsurface information.

WHY?

Requirement of Geotechnical Investigations

- Grouping of the Subsurface strata with similar Geotechnical Properties
- Strength
- Stiffness
- > Geophysical Exploration helps in
- > Rapid location and correlation of geological features
 - Stratigraphy
 - Lithology
 - Discontinuities
 - Ground Water
- In-situ measurement of
 - Modulli and Densities

FAILURES

Leaning Tower of Pisa and Sinkholes

HOW ?

General Techniques

- Seismic
- Electrical 🔶 🚽
- Sonic
- Magnetic
- Radar
- Gravity

SEISMIC TECHNIQUES

> <u>PRINCIPLE</u>

• difference in stiffness of different soil/rock layers

> <u>PROCEDURE</u>

- An elastic wave is generated in the ground
 - by Impactive force (Falling Weight or Hammer Blow)
 - Explosive Charge
- Resulting Ground motion is measured using vibration detectors (geophones)
- Time elapsed will help to evaluate different <u>Wave</u> <u>Velocities</u> in different layers

SEISMIC TECHNIQUES

≻ <u>Wave Types</u>

- Longitudinal Waves (P waves)
- Transverse or Shear Waves (S waves)
- Rayleigh Waves
- Love Waves

SEISMIC TECHNIQUES

> Methods

• **Reflection**

- **Down-Hole**

SEISMIC METHODS

 Reflection: standard in oil exploration (deep)
 Refraction: for shallow features like depth to bedrock or thickness of the unconsolidated material,

Also used in deciphering the internal structure of the earth (very deep, need a strong source of vibration like an earthquake)

> Wave/ ray behavior similar to light

SEISMIC WAVES

- Surface wave: considered noise
- Body waves: P (compressional) and S (shear)
- Velocity depends on the density of the layers; increases with increasing density
- Incident, reflected, and refracted rays
- Ray gets deflected away from the normal (lighter to a denser medium)
- Critical angle: refracted wave travels along the interface

SEISMIC REFRACTION

- Energy source: vibration created by a hammer blow or explosive in a drill hole
- Wave propagation: spherical waves in a homogeneous medium, wave fronts
- Rays: perpendicular to wave fronts, shown on diagrams
- Geophone: device that detects vibrations
- Seismograph: device that records the arrival times

GEOPHONE

SEISMIC REFRACTION

Seismic Refraction

SEISMIC REFLECTION

REFRACTION and **REFLECTION**

Figure 3-1. Schematic of seismic refraction survey

Table 4-1

Applications of Selected Geophysical and Other Methods for Determination of Engineering Parameters¹

Method	Basic Measurement	Application	Advantages	Limitations
		Surface		
Refraction seismic	Travel time of compressional waves through subsurface layers	Velocity determination of compression wave through subsurface. Depths to contrasting interfaces and geologic correlation of horizontal layers	Rapid, accurate, and relatively economical technique. Interpretation theory generally straightforward and equipment readily available	Incapable of detecting material of lower velocity underlying higher velocity. Thin stratum sometimes not detectable. Interpretation is not unique
Reflection seismic	Travel time of compressional waves reflected from subsurface layers	Mapping of selected reflector horizons. Depth determinations, fault detection, discontinuities, and other anomalous features	Rapid, thorough coverage of given site area. Data displays highly effective	Even with recent advances in high- resolution, seismic technology applicable to civil works projects is limited in area of resolution
		Borehole		
Uphole/downhole (seismic)	Vertical travel time of com- pressional and/or shear waves	Velocity determination of vertical P- and/or S-waves. Identification of low-velocity zones	Rapid technique useful to define low- velocity strata. Interpretation straightforward	Care must be exercised to prevent undesirable influence of grouting or casing
		(Sheet 2 of 5)	

Table 4-2 Numerical Rating of Geophysical Methods to Provide Specific Engineering Parameters¹ Engineering Application

	epth to Rock	-Wave Velocity	-Wave Velocity	hear Modulus	oung's Modulus	oisson's Ratio	ithology	laterial Boundaries tratigraphy	ip of Strata	ensity	Situ State of Stress	emperature	ermeability	ercent Saturation	iround water Table	iround water Quality	iround water Aquifers	low Rate and/or irection	orehole Diameter	bstructions	ippability	ault Detection	avity Detection	avity Delineation	ocation of Ore Bodies	orehole Azimuth nd Inclination
Geophysical Method	<u> </u>	۵_	S S	S	<u> </u>	<u> </u>		Σű			<u>=</u>	F	<u>Ľ</u>	٥	Ű	U	U	ΠO	Ď	0	Ľ	Ű	U	Ú	Ľ	ភ័យ
<u>Surface</u>																										
Refraction (seismic)	4	4	4	4	4	4	1	3	4	2	1	0	0	2	2	0	2	0	0	2	4	3	2	2	3	0
Reflection (seismic)	4	0	0	0	0	0	1	4	4	0	0	0	0	0	2	0	1	0	0	2	0	4	3	3	3	0
Uphole/downhole (seismic)	4	4	4	4	4	4	1	4	0	2	1	0	0	2	2	0	2	0	0	1	2	3	0	2	2	0
Crosshole (seismic)	4	4	4	4	4	4	1	4	2	2	1	0	0	2	2	0	2	0	0	3	2	3	3	2	3	0
									(Contir	nued))														

¹ Numerical rating refers to applicability of method in terms of current use and future potential:

0 = Not considered applicable

1 = Limited

2 = Used or could be used, but not best approach

3 = Excellent potential but not fully developed

4 = Generally considered as excellent approach; state of art well developed

A = In conjunction with other electrical and nuclear logs

² Methods not included in EM 1110-1-1802.

³ Airborne or inhole survey capability not considered.

Figure 3-6. Schematic of multiple-layer case and corresponding time-distance curve (Redpath 1973)

Figure 3-21. Subsurface cliff

the trend of the travel-time curves. One warning about the attempted detection of voids or discontinuities is in order. Fermat's principle says that the discontinuity must extend significantly perpendicular to the profile in order that no fast path detour is present that will minimize the observed delays.

Figure 3-22. Offset in time-distance plot due to discontinuity in rock surface

Table 3-1 Typical/Representative Field Values of V_{P} , p_{b} and v for Various Materials

Material	V _P (m/s)	p _{b,dry} (mg/m³)	v
Air	330	<u>.</u>	
Damp loam	300-750		
Dry sand	450-900	1.6-2.0	0.3-0.35
Clay	900-1,800	1.3-1.8	~0.5
Fresh, shallow water	1,430-1,490	1.0	
Saturated, loose sand	1,500		
Basal/ lodgement till	1,700-2,300	2.3	
Rock			0.15-0.25
Weathered igneous and metamorphic rock	450-3,700		
Weathered sedimen- tary rock	600-3,000		
Shale	800-3,700		
Sandstone	2,200-4,000	1.9-2.7	
Metamorphic rock	2,400-6,000		
Unweathered basalt	2,600-4,300	2.2-3.0	
Dolostone and limestone	4,300-6,700	2.5-3.0	
Unweathered granite	4,800-6,700	2.6-3.1	
Steel	6,000		

Vp and Vs

$$v = [(V_P/V_S)^2 - 2] / \{2[(V_P/V_S)^2 - 1]\}$$
(3-1)

$$E = p_b V_P^2 (1-2\nu)(1+\nu)/(1-\nu)$$
(3-2)

$$G = E/[2(1+v)]$$
 (3-3)

$$p_b = G/V_s^2 \tag{3-4}$$

In case of Saturated Media ?

Waves will pass through water (1500 m/s) and not through the soil structure

LIMITATIONS- SEISMIC REFRACTION

- Seismic refraction method: density of the layers must increase with depth
 - $V_3 > V_2 > V_1$ (if $V_2 < V_1$ and $V_3 > V_1$ then V_2 will not be "seen" by seis. refraction
- The ray bends towards the normal when going from denser (V_1) to lighter (V_2) medium; refracted into the earth
- When going from a lighter to denser medium the ray is refracted back to the surface

ELECTRICAL TECHNIQUES

> <u>PRINCIPLE</u>

 difference in electrical Resistivity of different soil/rock layers

> <u>PROCEDURE</u>

 An electrical current is made to flow through the ground under an electrical potential

 Resulting Apparent Resistivity of the Ground is measured.

THEORY OF MEASUREMENTS

Fig. 1.2 Diagram showing theory of earth resistivity methods. (*After U.S. Army Corps of Engineers.*)

APPARENT RESISTIVITY

EVALUATIONS

▼ FIGURE 2.39 Electrical resistivity survey: (a) Wenner method; (b) empirical method for determination of resistivity and thickness of each layer

DIFFERENT CONFIGURATIONS

Figure 2. Common arrays used in resistivity surveys and their geometric factors.

DIFFERENT MODELS

Figure 3. The three different models used in the interpretation of resistivity measurements.

2-D MODELS

2-D MODELS

3-D MODEL

51

Table 4-1 (Continued)

Method	Basic Measurement	Application	Advantages	l imitations
· · · ·		0		
		Surrace (Contin	1060)	
Electrical resistivity	Electrical resistance of a volume of material between probes	Complementary to refraction seis- mic. Quarry rock, ground water, sand and gravel prospecting. River bottom studies and cavity detection	Economical nondestructive technique. Can detect large bodies of "soft" materials	Lateral changes in calculated resistance often interpreted incorrectly as depth related; hence, for this and other reasons, depth determinations can be grossly in error. Should be used in conjunction with other methods, e.g.,

seismic

Table 4-2

Numerical Rating of Geophysical Methods to Provide Specific Engineering Parameters¹ Engineering Application

							-																				
Geophysical Method	Depth to Rock	P-Wave Velocity	S-Wave Velocity	Shear Modulus	Young's Modulus	Poisson's Ratio	Lithology	Material Boundaries Stratigraphy	Dip of Strata	Density	In Situ State of Stress	Temperature	Permeability	Percent Saturation	Ground water Table	Ground water Quality	Ground water Aquifers	Flow Rate and/or Direction	Borehole Diameter	Obstructions	Rippability	Fault Detection	Cavity Detection	Cavity Delineation	Location of Ore Bodies	Borehole Azimuth and Inclination	
Electrical resistivity	3	0	0	0	0	0	1	3	2	0	0	0	2	1	4	0	4	2	0	3	2	0	4	4	4	0	
	-	-	-			_	_	_	-		-																

Table 1. Resistivities of some common rocks, minerals and chemicals.

Material	Resistivity (Ω •m)	Conductivity (Siemen/m)
Igneous and Metamorphic Rocks Granite	$5x10^{3} - 10^{6}$	$10^{-6} - 2 \times 10^{-4}$
Basalt	$10^3 - 10^6$	$10^{-6} - 10^{-3}$
Slate	$6x10^2 - 4x10^7$	$2.5 \times 10^{-8} - 1.7 \times 10^{-3}$
Marble	$10^2 - 2.5 \times 10^8$	$4 \times 10^{-9} - 10^{-2}$
Quartzite	$10^2 - 2x10^8$	$5 \times 10^{-9} - 10^{-2}$
Sedimentarv Rocks Sandstone Shale Limestone Soils and waters Clay Alluvium Groundwater (fresh) Sea water Chemicals Iron 0.01 M Potassium chloride 0.01 M Sodium chloride 0.01 M acetic acid Xylene	$8 - 4x10^{3}$ $20 - 2x10^{3}$ $50 - 4x10^{2}$ $1 - 100$ $10 - 800$ $10 - 100$ 0.2 $9.074x10^{-8}$ 0.708 0.843 6.13 6.13 $6.998x10^{16}$	$2.5 \times 10^{-4} - 0.125$ $5 \times 10^{-4} - 0.05$ $2.5 \times 10^{-3} - 0.02$ $0.01 - 1$ $1.25 \times 10^{-3} - 0.1$ $0.01 - 0.1$ 5 1.102×10^{7} 1.413 1.185 0.163 1.429×10^{-17}

Construction Principles

Construction Equipment

Construction Processes

- > What is SUBGRADE Construction ?
- Compaction
 - Objectives
 - Factors
 - Mechanism
 - Created Fabric and Structure
 - Effect on Engineering Properties
 - Strength
 - Stiffness
 - Stability

I. Establishment of Grade Line

- Natural Ground (Cut)
- Embankment (Fill)

>2. Compaction

I. Establishment of Grade Line

The subgrade line should be established

- to obtain the optimum natural support for the pavement
- consistent with economic utilization of available materials
- traffic requirements
- a. Balancing Cut and Fill: Optimizing subgrade support and drainage should take precedence over balancing cut and fill.

b . Ground Water: The subgrade line will be above the flood plain and a minimum of 2 feet above wet season ground water level .Where not practicable, provide for permanent lowering of water table by drainage.

c. Rock: Rock excavation is to be avoided for economic reasons. Where excavation of rock is unavoidable, undercut to provide for full depth of base course under surface courses.

2. COMPACTION

PURPOSE:

- In engineering practice the soils at a given site do not often meet the ideal requirements or the intended purpose.
- They may be weak, highly compressible, or have a higher/lower permeability than desirable from an engineering or economic point of view.
- It would seem reasonable in such instances to simply relocate the structure or facility. However, considerations other than geotechnical often govern the location of a structure, and the engineer is forced to design for the site at hand.
- One possibility is to adapt and design according to the geotechnical conditions at the site.

2. COMPACTION

PURPOSE:

Another possibility is to try to stabilize or improve the engineering properties of the soils at the site. Depending on the circumstances, this second approach may be the most economical solution to the problem.

- Stabilization Methods are generally classified as:
- Mechanical
 COMPACTION
- Physical
- Chemical
- Thermal
- Electrical

EQUIPMENT REQUIRED

Clearing & Grubbing	Tractor Dozer,
	Rooter/Ripper
Excavation	Shovels, Dozers,
	Draglines, Scrapers
Transportation	Scrapers, Trucks,
	Dumpers
Spreading	Grader, Dozer
Watering	Tankers, Sprinklers
Compaction	Rollers of Different
	Types

COMPACTION

Objectives of Compaction

- Detrimental settlements can be reduced or prevented.
- Soil strength increases and slope stability can be improved.
- Bearing capacity of pavement subgrades can be improved.
- Undesirable volume changes, for example, caused by frost action, swelling, and shrinkage may be controlled.

COMPACTION

Compaction is a function of four variables:

> Dry Density

- Water Content
- Compactive Effort/Type
- Soil Type
 - gradation, presence of clay minerals, etc.

PROCTOR COMPACTION TEST

SUBGRADE COMPACTION

<u>Natural Subgrade</u>

- Compact at Grade Level to a depth of
- Compact from the surface (cohesionless soils except silts).
- Remove, process to desired water content, replace in lifts, and compact.

• <u>Embankment</u>

- Once borrow material has been transported to the fill area, bull-dozers, front loaders, and motor graders, called blades, spread the material to the desired layer or lift thickness.
- Lift thickness may range from 150 to 500 mm (6 to 18 in.) or so, depending on the size and type of compaction equipment and on the maximum grain size of the fill.

- NUMBER OF PASSES
- ? • SPEED

• ?

Fig. 5.18 Effect of roller travel speed on amount of compaction with 7700 kg (17,000 lb) towed vibratory roller (after Parsons, et al., 1962, as cited by Selig and Yoo, 1977).

COMPACTION DEPTH (Lift Thickness)

Cohesive Soils

<u>Compacted By Pressure</u>, Kneading,....

Cohesionless Soils

Compacted by Vibrations

- <u>Compaction Depth (Lift Thickness)</u>
- <u>Cohesive Soils</u>
- <u>Depends on</u>
 - <u>Pressure</u>
 - <u>Impact</u>
 - Vibration (if any)
 - Initial Density of Soil

- <u>Cohesionless Soils</u>
- Difference Between Compaction Characteristics
- Compaction Pressure
- Vibration Frequency

Fig. Ex. 5.2 Approximate method for determining lift height required to achieve a minimum compacted relative density of 75% with five roller passes, using data for a large lift height (after D'Appolonia, et al., 1969).

Thanks