

Lecture 03

Design of Doubly Reinforced Beam in Flexure

By: Prof Dr. Qaisar Ali

Civil Engineering Department

UET Peshawar

drqaisarali@uetpeshawar.edu.pk

Topics Addressed

- Background
- Flexural Capacity
- Maximum Reinforcement
- Design Steps
- Examples
- References

Background

- The problem in increasing the capacity of the beam is the restriction that A_s should not exceed A_{smax}. This places a restriction on the maximum flexural capacity of the beam.
- If A_s exceeds A_{smax} , the strain in concrete will reach to a value of 0.003 before ε_s reaches to 0.005, thus violating the ACI code recommenation for ensuring ductile behavior.
- However, If either the strength of concrete is increased or some reinforcement is placed on compression side, the load at which strain will reach to a value of 0.003 will be increased, When this happens A_s on tension side can be increaseed without compromising ductility, which will also increase the flexural capacity of the beam.

Background

- Practically this can achieved simply by placing some amount of additional reinforcement A_s' on both faces (tension and compression) of the beam. This will increase the range of A_{smax}
- In this case the beam is called as doubly reinforced beam.

Flexural Capacity

- Consider figure d and e, the flexural capacity of doubly reinforced beam consists of two couples:
- The forces $A_s f_y$ and $0.85 f_c$ ab provides the couple with lever arm (d a/2).
- $M_{n1} = A_s f_y (d a/2) \dots (c)$
- The forces $A_s'f_y$ and $A_s'f_s'$ provide another couple with lever arm (d d').

 $M_{n2} = A_s' f_s' (d - d')$ (d)

CE 320 Reinforced Concrete Design-I

Flexural Capacity

- The total nominal capacity of doubly reinforced beam is therefore,
- $M_n = M_{n1} + M_{n2} = A_s f_y (d a/2) + A_s' f_s' (d d')$

Flexural Capacity

• Factored flexural capacity is given as,

 $\Phi M_n = \Phi A_s f_y (d - a/2) + \Phi A_s' f_s' (d - d') \dots (e)$

• To avoid failure, $\Phi M_n \ge M_u$. For $\Phi M_n = M_u$, we have from equation (e),

 $M_{u} = \Phi A_{s} f_{y} (d - a/2) + \Phi A_{s}' f_{s}' (d - d') \dots (f)$

- Where, $\Phi A_s f_y (d a/2)$ is equal to $\Phi M_{nmax (singly)}$ for $A_s = A_{smax}$
- Therefore, $M_u = \Phi M_{nmax (singly)} + \Phi A_s' f_s' (d d')$
- $\{M_u \Phi M_{nmax (singly)}\} = \Phi A_s' f_s' (d d')$
- $A_s' = \{M_u \Phi M_{nmax (singly)}\} / \{\Phi f_s' (d d')\} \dots (g); where, f_s' \le f_y$

- $C_c + C_s = T$ [$\sum F_x = 0$]
- $0.85f_c'ab + A_s'f_s' = A_{st}f_y$
- For $A_{max} = \beta_1 c = 0.85 \times 0.375d$; A_{st} will become A_{stmax}
- $0.85f_{c}'\beta_{1}0.375db + A_{s}'f_{s}' = A_{stmax}f_{y}$
- $A_{stmax} = \beta_1 0.31875 bdf_c'/f_y + A_s'f_s'/f_y$
- $A_{\text{stmax}} = A_{\text{smax (singly)}} + A_s'f_s'/f_y$

 C_c = Compression force due to concrete in compression region,

 C_s = Compression force in steel in compression region needed to balance the tension force in addition to the tension force provided by $A_{smax (singly)}$.

- $A_{stmax} = A_{smax (singly)} + A_s' f_s' / f_y$
- The total steel area actually provided A_{st} as tension reinforcement must be less than A_{stmax} in above equation i.e. A_{st} ≤ A_{stmax}
- A_{stmax (singly)} is a fixed number, whereas A_s' is steel area actually placed on compression side. (For more clarification, see example)
 - Note that Compression steel in the above equation may or may not yield when tension steel yields.

- Conditions at which $f_s' = f_y$ when tension steel yields.
 - By similarity of triangle (fig b),

compression steel strain ($\epsilon_{s}{}^{\prime}\!)$ is,

• $\epsilon_{s}' = \epsilon_{u} (c - d') / c$ (h)

- For tensile steel strain (ε_s) = ε_t = 0.005 (for under reinforced behavior):
- c = 0.375d
- Substituting the value of c in eqn. (h), we get,
- $\epsilon_s' = \epsilon_u (0.375d d')/ 0.375d = (0.003 0.008d'/d)$ (i)
- Equation (i) gives the value of ε_{s}' for the condition at which reinforcement on tension side is at strain of 0.005 ensuring ductility.

- Conditions at which $f_s' = f_v$ when tension steel yields.
 - $\epsilon_{s}' = \{0.003 0.008d'/d\}$ (i) OR

 - Substituting $\varepsilon_{s}' = \varepsilon_{y}$, in equation (j).

 - Equation (k) gives the value of d'/d that ensures that when tension steel is at a strain of 0.005 (ensuring ductility), the compression steel will also be at yield.
 - Therefore for compression to yield, d'/d should be less than the value given by equation (k).

- Conditions at which $f_s' = f_v$ when tension steel yields.
 - Table 3 gives the ratios (d'/d) and minimum beam effective depths (d) for compression reinforcement to yield.
 - For grade 40 steel, the minimum depth of beam to ensure that compression steel will also yields at failure is 12.3 inch.

Table 3: Minimum beam depths for compression reinforcement to yield		
f _y , psi	Maximum d'/d	Minimum d for d' = 2.5" (in.)
40000	0.2	12.3
60000	0.12	21.5

Design Steps

- Step No. 01: Calculation of ΦM_{nmax (singly)}
- Step No. 02: Moment to be carried by compression steel
- Step No. 03: Find $\epsilon_{s}{'}$ and $f_{s}{'}$
- Step No. 04: Calculation of A_s' and A_{st}.
- Step No. 05: Ensure that d'/d < 0.2 (for grade 40) so that selection of bars does not create compressive stresses lower than yield.
- Step No. 06: Ductility requirements: $A_{st} \leq A_{stmax}$
- Step No. 07: Drafting

• Design a doubly reinforced concrete beam for an ultimate flexural demand of 4500 in-kip. The beam sectional dimensions are restricted. Material strengths are $f_c' = 3$ ksi and $f_y = 40$ ksi.

• Solution:

• Step No. 01: Calculation of ΦM_{nmax (singly)}

 $\rho_{max (singly)} = 0.0203$

 $A_{smax (singly)} = \rho_{max (singly)} bd = 4.87 in^2$

 $\Phi M_{nmax (singly)} = 2948.88 \text{ in-kip}$

• Step No. 02: Moment to be carried by compression steel

 $M_{u \text{ (extra)}} = M_{u} - \Phi M_{nmax \text{ (singly)}}$ = 4500 - 2948.88 = 1551.12 in-kip

- Solution:
 - Step No. 03: Find $\epsilon_{s}{'}$ and $f_{s}{'}$

From table 2, d = 20'' > 12.3'', and for d' = 2.5'', d'/d is 0.125 < 0.20 for grade 40 steel. So compression steel will yield.

Stress in compression steel $f_s' = f_y$

Alternatively,

 $\epsilon_{s}' = (0.003 - 0.008 d'/d)$ (i)

 $\epsilon_{s}' = (0.003 - 0.008 \times 2.5/20) = 0.002 > \epsilon_{v} = 40/29000 = 0.00137$

As ε_s' is greater than ε_v , so the compression steel will yield.

- Solution:
 - Step No. 04: Calculation of A_s' and A_{st}.

 $\mathsf{A_{s}'} = \mathsf{M_{u(extra)}} / \{ \Phi f_{s}'(d - d') \} = 1551.12 / \{ 0.90 \times 40 \times (20 - 2.5) \} = 2.46 \text{ in}^2$

• Total amount of tension reinforcement (A_{st}) is,

 $A_{st} = A_{smax (singly)} + A_{s}' = 4.87 + 2.46 = 7.33 \text{ in}^2$

• Using #8 bar, with bar area $A_b = 0.79 \text{ in}^2$

No. of bars to be provided on tension side = A_{st} / A_{b} = 7.33/ 0.79 = 9.28

No. of bars to be provided on compression side= $A_s'/A_b = 2.46/0.79 = 3.11$

Provide 10 #8 (7.9 in² in 3 layers) on tension side and

4 #8 (3.16 in² in 1 layer) on compression side.

• Solution:

• Step No. 05: Ensure that d'/d < 0.2 (for grade 40) so that selection of bars does not create compressive stresses lower than yield.

With tensile reinforcement of 10 #8 bars in 3 layers and compression reinforcement of 4 #8 bars in single layer, d = 19.625'' and d' = 2.375

d'/d = 2.375/ 19.625 = 0.12 < 0.2, OK

- Solution:
 - Step No. 06: Ductility requirements: A_{st} ≤ A_{stmax}
 - A_{st} , which is the total steel area actually provided as tension reinforcement must be less than A_{stmax} .

•
$$A_{stmax} = A_{smax (singly)} + A_s' f_s' / f_y$$

- $A_{stmax (singly)}$ is a fixed number for the case under consideration and A_{s}' is steel area actually placed on compression side.
- $A_{smax (singly)} = 4.87 \text{ in}^2$; $A_s' = 4 \times 0.79 = 3.16 \text{ in}^2$
- A_{stmax} = 4.87 + 3.16 = 8.036 in²

 $A_{st} = 7.9 \text{ in}^2$

Therefore $A_{st} = 7.9$ in² < A_{stmax} OK.

- Solution:
 - Step No. 07: Drafting
 - Provide 10 #8 (7.9 in² in 3 layers) on tension side and 4 #8 (3.16 in² in 1 layer) on compression side.

References

- Design of Concrete Structures 14th Ed. by Nilson, Darwin and Dolan.
- Building Code Requirements for Structural Concrete (ACI 318-14)