Lecture 06

Time Value of Money

By

Dr. Rafiq Mansoor

CHAPTER 7
 Time Value of Money

- Rates of return

■ Amortization

$$
7-3
$$

The Power of Compound Interest

A 20-year old student wants to start saving for retirement. She plans to save $\$ 3$ a day. Every day, she puts $\$ 3$ in her drawer. At the end of the year, she invests the accumulated savings ($\$ 1,095$) in an online stock account. The stock account has an expected annual return of 12%.

How much money by the age of 65 ?

If she begins saving today, and sticks to her plan, she will have $\$ 1,487,261.89$ by the age of 65.

How much would a 40-year old investor accumulate by this method?

Waiting until 40, the investor will only have $\$ 146,000.59$, which is over $\$ 1.3$ million less than if saving began at 20. So it pays to get started early.

How much would the 40-year old investor need to save to accumulate as much as the 20-year old?

The 40-year old investor would have to save $\$ 11,154.42$ every year, or $\$ 30.56$ per day to have as much as the investor beginning at the age of 20.

Will the FV of a lump sum be larger or smaller if we compound more often, holding the stated I\% constant? Why?

LARGER! If compounding is more frequent than once a year--for example, semiannually, quarterly, or daily--interest is earned on interest more often.

All rights reserved.

We will deal with 3 different rates:

$\mathrm{i}_{\text {Nom }}=$ nominal, or stated, or quoted, rate per year.
$\mathrm{i}_{\text {Per }}=$ periodic rate.
$E A R=E F F \%=\begin{gathered}\text { effective annual } \\ \text { rate }\end{gathered}$.
$\square \mathrm{i}_{\text {Nom }}$ is stated in contracts. Periods per year (m) must also be given.

■ Examples:

- 8\%; Quarterly
- 8\%, Daily interest (365 days)

■ Periodic rate $=i_{\text {Per }}=i_{\text {Nom }} / m$, where m is number of compounding periods per year. $\mathbf{m}=4$ for quarterly, 12 for monthly, and 360 or 365 for daily compounding.

■ Examples:

8% quarterly: $i_{\text {Per }}=8 \% / 4=2 \%$.
8% daily (365): $\mathrm{i}_{\text {Per }}=8 \% / 365=$ 0.021918\%.

■ Effective Annual Rate (EAR = EFF\%): The annual rate that causes PV to grow to the same FV as under multi-period compounding.
Example: EFF\% for 10\%, semiannual:

$$
\begin{aligned}
F V= & \left(1+i_{\text {Nom }} / \mathrm{m}\right)^{\mathrm{m}} \\
= & (1.05)^{2}=1.1025 \\
E F F \%= & 10.25 \% \text { because } \\
& (1.1025)^{1}=1.1025 .
\end{aligned}
$$

Any PV would grow to same FV at 10.25% annually or 10% semiannually.

■ An investment with monthly payments is different from one with quarterly payments. Must put on EFF\% basis to compare rates of return. Use EFF\% only for comparisons.
■ Banks say "interest paid daily." Same as compounded daily.

How do we find EFF\% for a nominal rate of 10%, compounded semiannually?

$$
\begin{aligned}
\text { EFF } & =\left(1+\frac{i_{\text {Nom }}}{m}\right)^{m}-1 \\
& =\left(1+\frac{0.10}{2}\right)^{2}-1.0 \\
& =(1.05)^{2}-1.0 \\
& =0.1025=10.25 \% .
\end{aligned}
$$

Or use a financial calculator.

$$
7-15
$$

EAR = EFF\% of 10\%

$E^{E A R}$ Annual $=10 \%$.
$E A R_{Q}=(1+0.10 / 4)^{4}-1=10.38 \%$
$E A R_{M}=(1+0.10 / 12)^{12}-1=10.47 \%$.
$E A R_{D(365)}=(1+0.10 / 365)^{365}-1=10.52 \%$.

Can the effective rate ever be equal to the nominal rate?

■ Yes, but only if annual compounding is used, i.e., if $\mathbf{m}=1$.

■If $m>1$, EFF\% will always be greater than the nominal rate.

When is each rate used?

$\mathbf{i}_{\text {Nom }}$: Written into contracts, quoted by banks and brokers. Not used in calculations or shown on time lines.

$\mathrm{i}_{\text {Per }}$: Used in calculations, shown on

 time lines.If $\mathrm{i}_{\text {Nom }}$ has annual compounding, then $i_{\text {Per }}=\mathbf{i}_{\text {Nom }} / \mathbf{1}=\mathbf{i}_{\text {Nom }}$.

EAR = EFF\%: Used to compare returns on investments with different payments per year.

(Used for calculations if and only if dealing with annuities where payments don't match interest compounding periods.)

FV of \$100 after 3 years under 10\%

semiannual compounding? Quarterly?

$$
\begin{aligned}
F V_{n} & =P V\left(1+\frac{i_{N o m}}{m}\right)^{m n} \\
F V_{3 S} & =\$ 100\left(1+\frac{0.10}{2}\right)^{2 \times 3} \\
& =\$ 100(1.05)^{6}=\$ 134.01 \\
F V_{3 Q} & =\$ 100(1.025)^{12}=\$ 134.49 .
\end{aligned}
$$

What's the value at the end of Year 3 of the following CF stream if the quoted interest rate is 10%, compounded semiannually?

■ Payments occur annually, but compounding occurs each 6 months.

■ So we can't use normal annuity valuation techniques.

1st Method: Compound Each CF

$\mathrm{FVA}_{3}=\$ 100(1.05)^{4}+\$ 100(1.05)^{2}+\$ 100$ = \$331.80.

2nd Method: Treat as an Annuity

Could you find FV with a financial calculator?

Yes, by following these steps:
a. Find the EAR for the quoted rate:

$$
E A R=\left(1+\frac{0.10}{2}\right)^{2}-1=10.25 \%
$$

Or, to find EAR with a calculator:

NOM\% = 10.

$P / Y R=2$.

$E F F \%=10.25$.
b. The cash flow stream is an annual annuity. Find $\mathrm{k}_{\text {Nom }}$ (annual) whose EFF\% = 10.25\%. In calculator, EFF\% = 10.25
$P / Y R=1$ NOM\% = 10.25
c.

INPUTS

OUTPUT

All rights reserved.

What's the PV of this stream?

All rights reserved.

Amortization

Construct an amortization schedule for a $\$ 1,000,10 \%$ annual rate loan with 3 equal payments.

Step 1: Find the required annual payments.

INPUTS $3 \quad 10-1000$
 N I/YR PV PMT FV OUTPUT 402.11

Step 2: Find the interest paid in Year 1.

$$
\begin{aligned}
& \mathrm{INT}_{\mathrm{t}}=\operatorname{Beg}_{\mathrm{baI}}^{\mathrm{t}} \\
& \mathrm{INT}_{1}=\$ 1,000(0.10)=\$ 100 .
\end{aligned}
$$

Step 3: Find repayment of principal in Year 1.

Repmt = PMT - INT
$=\$ 402.11-\$ 100$
$=\$ 302.11$.

Step 4: Find ending balance after Year 1.

End bal = Beg bal - Repmt = \$1,000 - \$302.11 = \$697.89.

Repeat steps 2-4 for Years 2 and 3 to complete the amortization table.

YR	BEG BAL	PMT	INT	PRIN	PND PML
1	$\$ 1,000$	$\$ 402$	$\$ 100$	$\$ 302$	$\$ 698$
2	698	402	70	332	366
3	366	402	37	366	0
TOT		$\underline{1,206.34}$	$\underline{\underline{206.34}}$	$\underline{\underline{1,000}}$	

Interest declines. Tax implications.

■ Amortization tables are widely used-for home mortgages, auto loans, business loans, retirement plans, etc. They are very important!
■ Financial calculators (and spreadsheets) are great for setting up amortization tables.

