Lecture 05

Time Value of Money

By

Dr. Rafiq Mansoor

CHAPTER 7 Time Value of Money

■ Future value
\square Present value
■ Rates of return
■ Amortization

Time lines show timing of cash flows.

Tick marks at ends of periods, so Time 0 is today; Time 1 is the end of Period 1; or the beginning of Period 2.

Time line for a $\$ 100$ lump sum due at the end of Year 2.

All rights reserved.

Time line for an ordinary annuity of $\$ 100$ for 3 years.

All rights reserved.

$$
7-6
$$

Time line for uneven CFs $\mathbf{- \$ 5 0}$ at $\mathrm{t}=0$ and $\$ 100, \$ 75$, and $\$ 50$ at the end of Years 1 through 3.

What's the FV of an initial \$100 after 3 years if $\mathrm{i}=10 \%$?

Finding FVs is compounding.

After 1 year:

$$
\begin{aligned}
F V_{1} & =P V+I N T_{1}=P V+P V(i) \\
& =P V(1+i) \\
& =\$ 100(1.10) \\
& =\$ 110.00 .
\end{aligned}
$$

After 2 years:

$$
\begin{aligned}
\mathrm{FV}_{2} & =\mathrm{PV}(1+\mathrm{i})^{2} \\
& =\$ 100(1.10)^{2} \\
& =\$ 121.00 .
\end{aligned}
$$

After 3 years:

$\mathrm{FV}_{3}=\mathrm{PV}(1+i)^{3}$ $=\$ 100(1.10)^{3}$
 = \$133.10.

In general,

$$
F V_{n}=P V(1+i)^{n}
$$

Four Ways to Find FVs

- Solve the equation with a regular calculator.

■ Use tables.
■ Use a financial calculator.
■ Use a spreadsheet.

Financial Calculator Solution

Financial calculators solve this equation:

$$
F V_{n}=P V(1+i)^{n} .
$$

There are 4 variables. If 3 are known, the calculator will solve for the 4th.

$$
7-12
$$

Here's the setup to find FV:

Clearing automatically sets everything to 0 , but for safety enter $\mathrm{PMT}=0$.

Set: P/YR = 1, END
All rights reserved.

What's the PV of $\$ 100$ due in 3 years if $i=10 \%$?

Finding PVs is discounting, and it's the reverse of compounding.

$$
\text { PV = ? }----------------100
$$

$$
7-14
$$

Solve $\mathrm{FV}_{\mathrm{n}}=\mathrm{PV}(1+\mathrm{i})^{\mathrm{n}}$ for PV:

$$
P V=\frac{F V_{n}}{(1+i)^{n}}=F V_{n}\left(\frac{1}{1+i}\right)^{n} .
$$

$$
\begin{aligned}
\text { PV } & =\$ 100\left(\frac{1}{1.10}\right)^{3}=\$ 100\left(\text { PVIF }_{\mathrm{i}, \mathrm{n}}\right) \\
& =\$ 100(0.7513)=\$ 75.13
\end{aligned}
$$

Financial Calculator Solution

INPUTS

OUTPUT

100
FV

Either PV or FV must be negative. Here $P V=-75.13$. Put in $\$ 75.13$ today, take out $\$ 100$ after 3 years.

If sales grow at 20\% per year, how long before sales double?

Solve for n :

$$
\begin{aligned}
F V_{n} & =\$ 1(1+i)^{n} \\
\$ 2 & =\$ 1(1.20)^{n}
\end{aligned}
$$

Use calculator to solve, see next slide.

INPUTS
OUTPUT 3.8

All rights reserved.

What's the difference between an ordinary annuity and an annuity due?

Ordinary Annuity

What's the FV of a 3-year ordinary annuity of $\$ 100$ at 10% ?

All rights reserved.

Financial Calculator Solution

Have payments but no lump sum PV, so enter 0 for present value.

What's the PV of this ordinary annuity?

All rights reserved.

Have payments but no lump sum FV, so enter 0 for future value.

Find the FV and PV if the annuity were an annuity due.

$$
\begin{array}{|cccc|}
0 & & 1 & 2 \\
\\
& 10 \% & & \\
\hline 100 & & 100 & 100
\end{array}
$$

All rights reserved.

$$
7-24
$$

Switch from "End" to "Begin."
Then enter variables to find $\mathrm{PVA}_{3}=\$ 273.55$.

Then enter PV = 0 and press FV to find FV = \$364.10.

What is the PV of this uneven cash flow stream?

All rights reserved.

■ Input in "CFLO" register:

$$
\begin{aligned}
& C F_{0}=0 \\
& C F_{1}=100 \\
& C F_{2}=300 \\
& C F_{3}=300 \\
& C F_{4}=-50
\end{aligned}
$$

■ Enter I = 10, then press NPV button to get NPV = \$530.09. (Here NPV = PV.)

What interest rate would cause \$100 to grow to $\$ 125.97$ in 3 years?

$$
\$ 100(1+i)^{3}=\$ 125.97
$$

INPUTS

All rights reserved.

The Power of Compound Interest

A 20-year old student wants to start saving for retirement. She plans to save $\$ 3$ a day. Every day, she puts $\$ 3$ in her drawer. At the end of the year, she invests the accumulated savings ($\$ 1,095$) in an online stock account. The stock account has an expected annual return of 12%.

How much money by the age of $65 ?$

$\begin{array}{lllll}\text { INPUTS } & 45 & 12 & 0 & -1095\end{array}$ N I/YR PV PMT FV
 OUTPUT 1,487,261.89

If she begins saving today, and sticks to her plan, she will have $\$ 1,487,261.89$ by the age of 65.

How much would a 40-year old investor accumulate by this method?

Waiting until 40, the investor will only have $\$ 146,000.59$, which is over $\$ 1.3$ million less than if saving began at 20. So it pays to get started early.

How much would the 40-year old investor need to save to accumulate as much as the 20-year old?

The 40-year old investor would have to save $\$ 11,154.42$ every year, or $\$ 30.56$ per day to have as much as the investor beginning at the age of 20.

Will the FV of a lump sum be larger or smaller if we compound more often, holding the stated I\% constant? Why?

LARGER! If compounding is more

 frequent than once a year--for example, semiannually, quarterly, or daily--interest is earned on interest more often.

All rights reserved.

