## **K** Nearest Neighbors

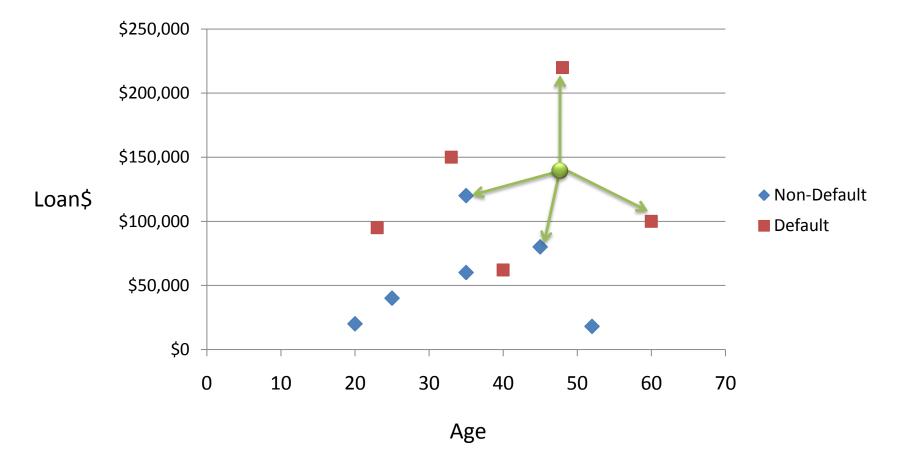
#### Dr. Saed Sayad

University of Toronto 2010 saed.sayad@utoronto.ca

http://chem-eng.utoronto.ca/~datamining/

## **KNN - Definition**

KNN is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure.


# KNN – different names

- K-Nearest Neighbors
- Memory-Based Reasoning
- Example-Based Reasoning
- Instance-Based Learning
- Case-Based Reasoning
- Lazy Learning

# KNN – Short History

- Nearest Neighbors have been used in statistical estimation and pattern recognition already in the beginning of 1970's (non-parametric techniques).
- Dynamic Memory: A theory of Reminding and Learning in Computer and People (Schank, 1982).
- People reason by remembering and learn by doing.
- Thinking is reminding, making analogies.
- Examples = Concepts???

## **KNN Classification**



## KNN Classification – Distance

| Age                                                           | Loan      | Default      | Distance |  |  |
|---------------------------------------------------------------|-----------|--------------|----------|--|--|
| 25                                                            | \$40,000  | \$40,000 N 1 |          |  |  |
| 35                                                            | \$60,000  | Ν            | 82000    |  |  |
| 45                                                            | \$80,000  | Ν            | 62000    |  |  |
| 20                                                            | \$20,000  | Ν            | 122000   |  |  |
| 35                                                            | \$120,000 | N            | 22000    |  |  |
| 52                                                            | \$18,000  | N            | 124000   |  |  |
| 23                                                            | \$95,000  | \$95,000 Y   |          |  |  |
| 40                                                            | \$62,000  | Y            | 80000    |  |  |
| 60                                                            | \$100,000 | 00,000 Y     |          |  |  |
| 48                                                            | \$220,000 | Y            | 78000    |  |  |
| 33                                                            | \$150,000 | Υ ←          | 8000     |  |  |
|                                                               |           | 1            |          |  |  |
| 48                                                            | \$142,000 | ?            |          |  |  |
| Euclidean Distance $D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ |           |              |          |  |  |

## Similarity - Distance Measure

Euclidean 
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

$$\sum_{i=1}^{\kappa} \left| x_i - y_i \right|$$

Minkowski 
$$\left(\sqrt{\sum_{i=1}^{k} \left(\left|x_{i}-y_{i}\right|\right)^{q}}\right)^{1/q}$$

1\_

#### KNN Classification – Standardized Distance

| Age                                                                   | Loan | Default            | Distance |  |  |  |
|-----------------------------------------------------------------------|------|--------------------|----------|--|--|--|
| 0.125                                                                 | 0.11 | N                  | 0.7652   |  |  |  |
| 0.375                                                                 | 0.21 | Ν                  | 0.5200   |  |  |  |
| 0.625                                                                 | 0.31 | N ←                | 0.3160   |  |  |  |
| 0                                                                     | 0.01 | N                  | 0.9245   |  |  |  |
| 0.375                                                                 | 0.50 | N                  | 0.3428   |  |  |  |
| 0.8                                                                   | 0.00 | N                  | 0.6220   |  |  |  |
| 0.075                                                                 | 0.38 | Y                  | 0.6669   |  |  |  |
| 0.5                                                                   | 0.22 | Y                  | 0.4437   |  |  |  |
| 1                                                                     | 0.41 | Y                  | 0.3650   |  |  |  |
| 0.7                                                                   | 1.00 | Y                  | 0.3861   |  |  |  |
| 0.325                                                                 | 0.65 | Y                  | 0.3771   |  |  |  |
|                                                                       |      |                    |          |  |  |  |
| 0.7                                                                   |      | ? <del>&lt;ا</del> |          |  |  |  |
| 0.7 0.61 ?<br>Standardized Variable $X_s = \frac{X - Min}{Max - Min}$ |      |                    |          |  |  |  |
| Standar Max - Min                                                     |      |                    |          |  |  |  |

## **KNN Regression - Distance**

| Age | Loan      | House Price Index | Distance |
|-----|-----------|-------------------|----------|
| 25  | \$40,000  | 135               | 102000   |
| 35  | \$60,000  | 256               | 82000    |
| 45  | \$80,000  | 231               | 62000    |
| 20  | \$20,000  | 267               | 122000   |
| 35  | \$120,000 | 139               | 22000    |
| 52  | \$18,000  | 150               | 124000   |
| 23  | \$95,000  | 127               | 47000    |
| 40  | \$62,000  | 216               | 80000    |
| 60  | \$100,000 | 139               | 42000    |
| 48  | \$220,000 | 250               | 78000    |
| 33  | \$150,000 | 264               | 8000     |
|     |           |                   |          |
| 48  | \$142,000 | ?                 |          |

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

#### KNN Regression – Standardized Distance

| Age   | Loan | House Price Index     | Distance |  |  |
|-------|------|-----------------------|----------|--|--|
| 0.125 | 0.11 | 135                   | 0.7652   |  |  |
| 0.375 | 0.21 | 256                   | 0.5200   |  |  |
| 0.625 | 0.31 | <b>—</b> 231 <b>—</b> | 0.3160   |  |  |
| 0     | 0.01 | 267                   | 0.9245   |  |  |
| 0.375 | 0.50 | 139                   | 0.3428   |  |  |
| 0.8   | 0.00 | 150                   | 0.6220   |  |  |
| 0.075 | 0.38 | 127                   | 0.6669   |  |  |
| 0.5   | 0.22 | 216                   | 0.4437   |  |  |
| 1     | 0.41 | 139                   | 0.3650   |  |  |
| 0.7   | 1.00 | 250                   | 0.3861   |  |  |
| 0.325 | 0.65 | 264                   | 0.3771   |  |  |
|       |      |                       |          |  |  |
| 0.7   | 0.61 | └ <b>→</b> ?          |          |  |  |

$$X_{s} = \frac{X - Min}{Max - Min}$$

# KNN – Number of Neighbors

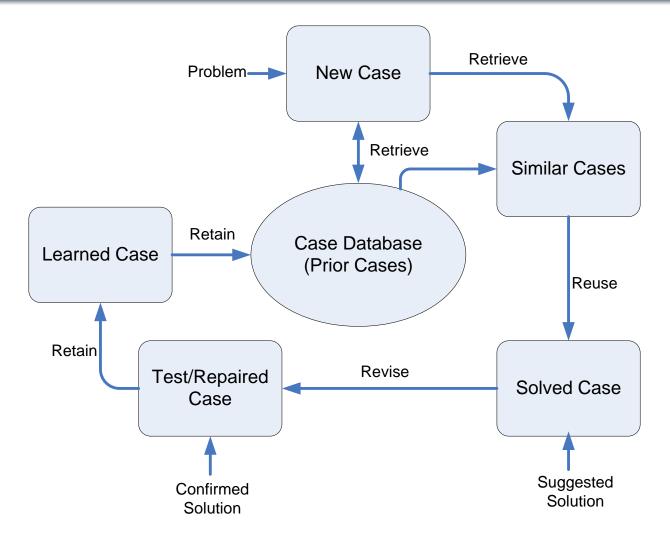
- If K=1, select the nearest neighbor
- If K>1,
  - For classification select the most frequent neighbor.
  - For regression calculate the average of K neighbors.

## **Distance – Categorical Variables**

| Х    | Y      | Distance |
|------|--------|----------|
| Male | Male   | 0        |
| Male | Female | 1        |

$$x = y \Longrightarrow D = 0$$
$$x \neq y \Longrightarrow D = 1$$

## Similarity – Hamming Distance


$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

| Gene 1           | А | А | Т | С | С | Α | G | Т |
|------------------|---|---|---|---|---|---|---|---|
| Gene 2           | Т | С | Т | С | А | А | G | С |
| Hamming Distance | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |

## **Instance Based Reasoning**

- **IB1** is based on the standard KNN
- **IB2** is incremental KNN learner that only incorporates misclassified instances into the classifier.
- **IB3** discards instances that do not perform well by keeping success records.

## **Case Based Reasoning**



# **KNN - Applications**

- Classification and Interpretation

   legal, medical, news, banking
- Problem-solving

   planning, pronunciation
- Function learning
   dynamic control
- Teaching and aiding

   help desk, user training

## Summary

- KNN is conceptually simple, yet able to solve complex problems
- Can work with relatively little information
- Learning is simple (no learning at all!)
- Memory and CPU cost
- Feature selection problem
- Sensitive to representation

# **QUESTIONS?**