

Risk Management

The proactive management of risks throughout the software development lifecycle is
important for project success. In this chapter, we will explain the following:
• the risk management practice, which involves risk identification, analysis,

prioritization, planning, mitigation, monitoring, and communication
• software development risks that seem to reoccur in educational and industrial

projects
• a risk-driven process for selecting a software development model

Risk in itself is not bad; risk is essential to progress, and failure is often a key part of
learning. But we must learn to balance the possible negative consequences of risk against
the potential benefits of its associated opportunity. (Van Scoy, 1992)

A risk is a potential future harm that may arise from some present action (Wikipedia,
2004), such as, a schedule slip or a cost overrun. The loss is often considered in terms of
direct financial loss, but also can be a loss in terms of credibility, future business, and
loss of property or life.

This chapter is about doing proactive planning for your software projects via risk
management. Risk management is a series of steps whose objectives are to identify,
address, and eliminate software risk items before they become either threats to successful
software operation or a major source of expensive rework. (Boehm, 1989) The software
industry is fraught with failed and delayed projects, most of which far exceed their
original budget. The Standish Group reported that only 28 percent of software projects
are completed on time and on budget. Over 23 percent of software projects are cancelled
before they ever get completed, and 49 percent of projects cost 145 percent of their
original estimates. (Standish, 1995) In hindsight, many of these companies indicated that
their problems could have been avoided or strongly reduced if there had been an explicit
early warning of the high-risk elements of the project. Many projects fail either because
simple problems were reported too late or because the wrong problem was addressed.
(Bruegge and Dutoit, 2000)

Problems happen. Teams can choose to be reactive or proactive about these problems.
Reactive teams fly into action to correct the problem rapidly in a crisis-driven, fire-
fighting mode. Without proper planning, problems often occur late in the schedule. At
this point, resolving any serious problems can require extensive modification, leading to
big delays. Proactive teams begin thinking about risks even before technical work is
initiated. Their objective is to be able to avoid risk whenever possible, to solve problems
before they manifest themselves and to respond to problems that do happen in a
controlled and effective manner. This chapter is about being proactive.

1 The Risk Management Practice
The risk management process can be broken down into two interrelated phases, risk
assessment and risk control, as outlined in Figure 1. These phases are further broken

Risk Management

© Laurie Williams 2004 2

down. Risk assessment involves risk identification, risk analysis, and risk prioritization.
Risk control involves risk planning, risk mitigation, and risk monitoring.(Boehm, 1989)
Each of these will be discussed in this section. It is essential that risk management be
done iteratively, throughout the project, as a part of the team’s project management
routine.

Figure 1: The Risk Management Cycle.

1.1 Risk Identification
In the risk identification step, the team systematically enumerates as many project risks as
possible to make them explicit before they become problems. There are several ways to
look at the kinds of software project risks, as shown in Table 1. It is helpful to understand
the different types of risk so that a team can explore the possibilities of each of them.
Each of these types of risk is described below.

Table 1: General Categories of Risk

Generic Risks Product-Specific Risks
Project Risks Product Risks Business Risks

Factors to consider:

People, size, process, technology, tools, organizational, managerial,
customer, estimation, sales, support

Generic risks are potential threats to every software project. Some examples of generic
risks are changing requirements, losing key personnel, or bankruptcy of the software
company or of the customer. It is advisable for a development organization to keep a
checklist of these types of risks. Teams can then assess the extent to which these risks are
a factor for their project based upon the known set of programmers, managers, customers,

Identify Analyze

Prioritize Plan (Top) Mitigate (Top)

Monitor

Risk Management

© Laurie Williams 2004 3

and policies. Product-specific risks can be distinguished from generic risks because they
can only be identified by those with a clear understanding of the technology, the people,
and the environment of the specific product. An example of a product-specific risk is the
availability of a complex network necessary for testing.

Generic and product-specific risks can be further divided into project, product, and
business risks. Project risks are those that affect the project schedule or the resources
(personnel or budgets) dedicated to the project. Product risks are those that affect the
quality or performance of the software being developed. Finally, business risks are those
that threaten the viability of the software, such as building an excellent product no one
wants or building a product that no longer fits into the overall business strategy of the
company.

There are some specific factors to consider when examining project, product, and
business risks. Some examples of these factors are listed here, although this list is meant
to stimulate your thinking rather than to be an all-inclusive list.
• People risks are associated with the availability, skill level, and retention of the

people on the development team.
• Size risks are associated with the magnitude of the product and the product team.

Larger products are generally more complex with more interactions. Larger teams are
harder to coordinate.

• Process risks are related to whether the team uses a defined, appropriate software
development process and to whether the team members actually follow the process.

• Technology risks are derived from the software or hardware technologies that are
being used as part of the system being developed. Using new or emerging or complex
technology increases the overall risk.

• Tools risks, similar to technology risks, relate to the use, availability, and reliability of
support software used by the development team, such as development environments
and other Computer-Aided Software Engineering (CASE) tools.

• Organizational and managerial risks are derived from the environment where the
software is being developed. Some examples are the financial stability of the
company and threats of company reorganization and the potential of the resultant loss
of support by management due to a change in focus or a change in people.

• Customer risks are derived from changes to the customer requirements, customers’
lack of understanding of the impact of these changes, the process of managing these
requirements changes, and the ability of the customer to communicate effectively
with the team and to accurately convey the attributes of the desired product.

• Estimation risks are derived from inaccuracies in estimating the resources and the
time required to build the product properly.

• Sales and support risks involve the chances that the team builds a product that the
sales force does not understand how to sell or that is difficult to correct, adapt, or
enhance.

Spontaneous and sporadic risk identification is usually not sufficient. There are various
risk elicitation techniques the team can use to systematically and proactively surface risks:

Risk Management

© Laurie Williams 2004 4

• Meeting. The team, including the development team and the marketing and customer
representatives if possible, gathers together. The group brainstorms; each participant
spontaneously contributes as many risks as they can possibly think of.

• Checklists/Taxonomy. The risk elicitors are aided in their risk identification by the use
of checklists and/or taxonomies (in other words, a defined, orderly classification of
potential risks) that focuses on some subset of known and predictable risks.
Checklists and taxonomies based upon past projects are especially beneficial. These
artifacts should be used to interview project participants, such as the client, the
developers, and the manager.

• Comparison with past projects. The risk elicitors examine the risk management
artifacts of previous projects. They consider whether these same risks are present in
the new project.

• Decomposition. Large, unwieldy, unmanageable risks that are identified are further
broken down into small risks that are more likely to be managed. Additionally, by
decomposing the development process into small pieces, you may be able to identify
other potential problems.

Project participants can be reluctant to communicate potential failures or shortcomings
and can be too optimistic about the future. It is essential that all participants are
encouraged to report risks so they can be monitored and managed. Participants should be
rewarded for identifying risks and problems as early as possible.

It is recommended that risks should be stated using the condition-transition-consequence
(CTC) format (Gluch, 1994):

Given that <condition> then there is a concern that (possibly) <transition>
<consequence>.

• Condition is a description of the current conditions prompting concern.
• Transition is the part that involves change (time).
• Consequence is a description of the potential outcome.

For example, given that no one in our team has ever developed a product in Prolog, then
there is a concern that (possibly) the project will take two months longer than has been
estimated.

1.2 Analyze
After risks have been identified and enumerated, the next step is risk analysis. Through
risk analysis, we transform the risks that were identified into decision-making
information. In turn, each risk is considered and a judgment made about the probability
and the seriousness of the risk. For each risk, the team must do the following:

• Assess the probability of a loss occurring. Some risks are very likely to occur. Others

are very unlikely. Establish and utilize a scale that reflects the perceived likelihood of
a risk. Depending upon the degree of detail desired and/or possible, the scale can be
numeric, based on a percentage scale, such as “10 percent likely to lose a key team

Risk Management

© Laurie Williams 2004 5

member” or based on categories, such as: very improbable, improbable, probable, or
frequent. In the case that a categorical assignment is used, the team should establish a
set numerical probability for each qualitative value (e.g. very improbable= 10 percent,
improbable = 25 percent).

• Assess the impact of the loss if the loss were to occur. Delineate the consequences of
the risk, and estimate the impact of the risk on the project and the product. Similar to
the probability discussion above, the team can choose to assign numerical monetary
values to the magnitude of loss, such as $10,000 for a two-week delay in schedule.
Alternately, categories may be used and assigned values, such as 1=negligible,
2=marginal, 3=critical, or 4=catastrophic.

Determining the probability and the magnitude of the risk can be difficult and can seem
to be arbitrarily chosen. One means of determining the risk probability is for each team
member to estimate each of these values individually. Then, the input of individual team
members is collected in a round robin fashion and reported to the group. Sometimes the
collection and reporting is done anonymously. Team members debate the logic behind
the submitted estimates. The individuals then re-estimate and iterate on the estimate until
assessment of risk probability and impact begins to converge. This means of converging
on the probability and estimate is called the Delphi Technique (Gupta and Clarke, 1996).
The Delphi Technique is a group consensus method that is often used when the factors
under consideration are subjective.

The analyzed risks are organized into a risk table. The template for a risk table is shown
in Table 2. In Sections 2 and 3, we show you some completed sample risk tables. The
information that is to be provided in each of the columns is now explained.
• Rank will be discussed in section 1.3.
• Risk is the description of the risk itself, preferably stated in CTC format.
• Probability is the likelihood of the risk occurring, using either a numeric or

categorical scale, as discussed in the last section.
• Impact is the magnitude of the loss if the risk were to occur, using either a numeric

or a categorical scale.
• Rank last week and the number of weeks on list are documented so the team can

monitor changes in priority, to determine if actions are being taken that cause
changes in the stature of the risk.

• Action documents what the team is doing to manage the risk, as will be discussed in
sections 1.4-1.5. The action field is often not completed until the risks have been
prioritized, as will be discussed in the next section.

Table 2: Risk Table Template

Rank Risk Probab

ility
Impact Rank Last

Week/
Weeks on
list

Action

Risk Management

© Laurie Williams 2004 6

1.3 Prioritize
After the risks have been organized into a risk table, such as Table 4.2, the team
prioritizes the risks by ranking them. It is too costly and perhaps even unnecessary to take
action on every identified risk. Some of them have a very low impact or a very low
probability of occurring – or both. Through the prioritization process, the team
determines which risks it will take action on.

The team sorts the list so that the high probability, high impact risks percolate to the top
of the table and the low-probability, low impact risks drop to the bottom. If the team used
categorical values for probability (e.g. very improbable, improbable, probable, or
frequent) and/or impact (e.g. negligible, marginal, critical, or catastrophic), group
consensus techniques may need to be used to produce the risk ranking. We will show you
an example of this type of ranking in Section 2.

If numerical values were given for probability (percentage) and impact (monetary), the
risk exposure can be calculated. Risk exposure is calculated as follows (Boehm, 1989):

Risk Exposure (RE) = P × C

where P = probability of occurrence for a risk and C is the impact of the loss to the
product should the risk occur. For example, if the probability of a risk is 10 percent and
the impact of the risk is $10,000, the risk exposure = (0.1)($10,000) = $1,000. If RE is
calculated for each risk, the prioritization is based upon a numerical ranking of the risk
exposures. We will show you an example of this type of ranking in Section 3.

After the risks are prioritized, the team, led by the project manager, defines a cut off line
so that only the risks above the line are given further attention. The activities of this
“further attention” are to plan, mitigate, monitor, and communicate – as is discussed in
the following sections. The lower ranked risks stay on the table for the time being with no
action other than monitoring.

1.4 Plan
Risk management plans should be developed for each of the “above the line” prioritized
risks so that proactive action can take place. These actions are documented in the Action
column of the Risk Table (Table 2). Following are some examples of the kinds of risk
planning actions that can take place:
• Information buying. Perceived risk can be reduced by obtaining more information

through investigation. For example, in a project in which the use of a new technology
has created risk, the team can invest some money to learn about the technology.
Throw-away prototypes can be developed using the new technology to educate some
of the staff on the new technology and to assess the fit of the new technology for the
product.

Risk Management

© Laurie Williams 2004 7

• Contingency plans. A contingency plan is a plan that describes what to do if certain
risks materialize. By planning ahead with such a plan, you are prepared and have a
strategy in place do deal with the issue.

• Risk reduction. For example, if the team is concerned that the use of a new
programming language may cause a schedule delay, the budget might contain a line
item entitled “potential schedule” to cover a potential schedule slip. Because the
budget already covers the potential slip, the financial risk to the organization is
reduced. Alternately, the team can plan to employ inspections to reduce the risk of
quality problems.

• Risk acceptance. Sometimes the organization consciously chooses to live with the
consequences of the risk (Hall, 1998) and the results of the potential loss. In this case,
no action is planned.

1.5 Mitigate
Related to risk planning, through risk mitigation, the team develops strategies to reduce
the possibility or the loss impact of a risk. Risk mitigation produces a situation in which
the risk items are eliminated or otherwise resolved. These actions are documented in the
Action column of the Risk Table (Table 2). Some examples of risk mitigation strategies
follow:

• Risk avoidance. When a lose-lose strategy is likely (Hall, 1998)1, the team can opt
to eliminate the risk An example of a risk avoidance strategy is the team opting
not to develop a product or a particularly risky feature.

• Risk protection. The organization can buy insurance to cover any financial loss
should the risk become a reality. Alternately, a team can employ fault-tolerance
strategies, such as parallel processors, to provide reliability insurance.

Risk planning and risk mitigation actions often come with an associated cost. The team
must do a cost/benefit analysis to decide whether the benefits accrued by the risk
management steps outweigh the costs associated with implementing them. This
calculation can involve the calculation of risk leverage (Pfleeger, 1998).

Risk Leverage =
(risk exposure before reduction – risk exposure after reduction)/cost of risk reduction

If risk leverage value, rl, is ≤ 1, clearly the benefit of applying risk reduction is not worth
its cost. If rl is only slightly > 1, still the benefit is very questionable, because these
computations are based on probabilistic estimates and not on actual data. Therefore, rl is
usually multiplied by a risk discount factor ρ < 1. If ρ rl > 1, then the benefit of applying
risk reduction is considered worth its cost. If the discounted leveraged valued is not high
enough to justify the action, the team should look for other, less costly or more effective,
reduction techniques.

1 In the lose-lose strategy, everyone gives something up, in the sense that neither side gets what they want,
but everyone can live with the decision.

Risk Management

© Laurie Williams 2004 8

1.6 Monitor
After risks are identified, analyzed, and prioritized, and actions are established, it is
essential that the team regularly monitor the progress of the product and the resolution of
the risk items, taking corrective action when necessary. This monitoring can be done as
part of the team project management activities or via explicit risk management activities.
Often teams regularly monitor their “Top 10 risks.”

Risks need to be revisited at regular intervals for the team to reevaluate each risk to
determine when new circumstances caused its probability and/or impact to change. At
each interval, some risks may be added to the list and others taken away. Risks need to be
reprioritized to see which are moved “above the line” and need to have action plans and
which move “below the line” and no longer need action plans. A key to successful risk
management is that proactive actions are owned by individuals and are monitored.
(Larman, 2004)

As time passes and more is learned about the project, the information gained over time
may alter the risk profile considerably. Additionally, time may make it possible to refine
the risk into a set of more detailed risks. These refined risks may be easier to mitigate,
monitor, and manage.

1.7 Communicate
On-going and effective communication between management, the development team,
marketing, and customer representatives about project risks is essential for effective risk
management. This communication enables the sharing of all information and is the
cornerstone of effective risk management.

1.8 The Stakeholders of Risk Management
The three stakeholders are involved in risk management.
• The developer must systematically and continually enumerate all the possible risks

related to technical capability and making the schedule.
• The manager must lead the team to follow the risk management process to

proactively manage the project risks. The manager must also allocate resources for
proactive risks management.

• The customer must participate in the continual identification of risks.

None of these stakeholders is empowered to manage business risks, i.e. what we called
organizational and managerial risks, and sales and support risks in the "Risk
Identification " section above. This kind of risk must be managed by upper management
and marketing department of the firm.

2 Risk Management in Educational Projects
Sometimes the need for risk management can seem far off for students. After all, you
don’t do anything close to buying insurance to reduce the risk for your class projects!
However, consider that your success (your grade) in the class is at risk. In beginning
computer science classes, your assignments were probably small, the requirements of

Risk Management

© Laurie Williams 2004 9

these assignments crisp and defined, and you worked alone. Your chances of being
successful were well within your own control. As you advance in your academic career,
course projects will likely become quite a bit longer, you will be working with at least
one other person, and the requirements will be more ambiguous and even changeable. All
of a sudden, things aren’t nearly as under control. What can you do to improve your odds
of getting a good grade? Employing risk management can help.

Table 3 shows the ranked “Top 10” risk items based upon the frequency with which they
were identified during the six weeks of risk management by 24 student teams in an
undergraduate software engineering class. The students worked in teams of four or five
students on a project that lasted seven weeks. All project teams completed the same
project. A graduate student performed the role of customer for the students. You should
consider whether your own projects could encounter these same risks.

Table 3: Student Top 10 Risk Items

Risk Item Risk Management Technique
Overriding other people’s work,
not having the latest versions of
code

Use a configuration management tool effectively.

Lack of exposure to and/or
experience with technologies

Take time to learn tools and technologies, seek help
from teaching staff.

Being overwhelmed by work in
other classes

Have a project management plan with deadlines and
ownership, update the project management plan
frequently.

Common meeting times In the beginning of the project, determine all possible
common times to meet based on class schedules and
other commitments.

Requirements understanding Meet with, e-mail, or phone customer.
Lack of communication Set up a group Web page, group e-mail accounts,

trade instant messaging IDs, meet regularly.
Project organization Assign each team member a role, break down work in

project management plan.
Loss of a team member Assure files are uploaded and integrated consistently,

use knowledge management strategies such as pair
programming to understand each other’s work.

Difficulty integrating work Increase communication, integrate often.
Planning taking up too much
time, not enough time to work
on product

Don’t get more detailed than necessary with the
planning.

A sample student team risk management table from the class described above is shown
below in Table 4; the team is in the fifth week of the project. Both the probability and the
impact use categorical values, which is typical of a student project. Because of this, the
student teams must use a group consensus technique to rank their risks. The method of

Risk Management

© Laurie Williams 2004 10

using categories for risk analysis and group consensus for risk prioritization is also used
in industry.

Table 4: Sample Student Risk Table

Rank Risk Probabil

ity
Impact Rank

Last
Week/
Weeks
on list

Action

1 None of us knows how to
use the technology.

frequent critical 1/5 Read. Do tutorials.

2 Integration problems. frequent critical 2/5 Integrate all work
Sunday nights.

3 Someone drops
the class.

improb critical 4/5 Pair programming
for all work.

4 Team members missing
important team meetings.

improb. marginal 5/4 Person who
misses meeting
has to supply
Sunday night
pizza the next
week.

5 Overriding each other’s
work

improb marginal 3/5 Continue using
CVS.

3 Risk Management in Industrial Projects
Industrial projects have many different types of risks than you would experience as a
student. Some of the risks, such as changing requirements and losing team members are
similar. Boehm developed a top 10 risk item for industrial projects by surveying several
experienced managers. This list is shown below in Table 5.

Risk Management

© Laurie Williams 2004 11

Table 5: Industry Top 10 Software Risk Items, adapted from (Boehm, 1989; Boehm,
January 1991)

Risk Item Risk Management Technique
Personnel shortfall Staffing with top talent, job matching, team

building, key personnel agreements, cross training
Unrealistic schedules and budgets Detailed milestone cost and schedule estimation,

design to cost, incremental development, software
reuse, requirements scrubbing

Developing the wrong functions
and properties

Organizational analysis, mission analysis,
operations-concept formulation, user surveys and
user participation, prototyping, early users’ manuals

Developing the wrong user
interface

Prototyping, scenarios, task analysis, user
participation

Gold-plating
(e.g. implementing “neat features”
not asked for by customer)

Requirements scrubbing, prototyping, cost-benefit
analysis, designing to cost

Continuing stream of requirements
changes

High change threshold information hiding,
incremental development (deferring changes to later
increments)

Shortfalls in externally-furnished
components (e.g. component
reuse)

Benchmarking, inspections, reference checking,
compatibility analysis

Shortfalls in externally performed
tasks (e.g. worked performed by a
contractor)

Reference checking, pre-award audits, award-fee
contracts, competitive design or prototyping, team
building

Real-time performance shortfalls Simulation, benchmarking, modeling, prototyping,
instrumentation, tuning

Straining computer science
capabilities

Technical analysis, cost-benefit analysis,
prototyping, reference checking

Table 6 shows a sample risk table for an industrial team. The kinds of risk that rise to the
top are different than in the student risk table. Additionally, while the student example
used categories for probability and impact, the industrial team uses their best estimate of
numerical probability and impact. As discussed earlier, using these numerical values, the
risk exposure can be calculated (risk exposure = probability * impact). Risk exposure can
then be used for ranking the risks.

Risk Management

© Laurie Williams 2004 12

Table 6 Sample Industrial Risk Table

Rank Risk Prob. Impact Risk

Exp.
Rank
Last
Week/
Weeks
on list

Action

1 Delay by Raleigh team to
deliver toolkit

50% $10,000 $5,000 3/10 Weekly status
meeting,
Possibility of
interim releases.

2 Requirements changes 40% $7,000 $2,800 1/12 Bi-weekly
deliverables.

3 Aggressive performance
requirements

30% $9,000 $2,700 4/5 Prototyping,
performance
testing.

4 Lose team member 5% $50,000 $2,500 8/12 Pair programming.
5 Unsure of desired graphical

user interface
5% $1,000 $50 6/12 Design with the

Model-View-
Controller pattern.

It can be difficult, even for an industrial team, to estimate numerical values for
probability and loss. To overcome this, you can assess these two values on a relative
scale of 0 to 10 rather than trying to estimate numerical values.

4 Risk Management for Software Development Model Selection
(with credit to Barry Boehm and Richard Turner)

One large and potentially risky decision for a software development team is the selection
of the software development methodology and associated practices. We have introduced
the plan-driven software development model and the agile software development model.
Depending upon the type of project and team, one of these models or a hybrid of the two
is best. This section of the chapter is very important for you to understand. As you
proceed through the rest of the book, you will be presented with alternatives for many
development practices (such as plan-driven requirements, agile requirements, plan-driven
design, and agile design). It is important for you to understand that you need to choose
the alternative that is appropriate for the project you are working on.

In this section, we explain a risk-driven approach to making the selection between an
agile, a plan-driven, or a hybrid software development model. The five-step method was
developed by Barry Boehm and Richard Turner (Boehm and Turner, 2003; Boehm and
Turner, June 2003). Boehm and Turner developed the method so that software developers
can enjoy the benefits of both agile and plan-driven methods, while mitigating many of
their drawbacks. The guidance given by their method is important because every
development practice has its situation-dependent shortcomings and its home ground (the
situations for which each is best suited). Agile methodologies promise increased
customer satisfaction, lower defect rates, faster development times, and a solution to

Risk Management

© Laurie Williams 2004 13

rapidly changing requirements. Agile methods are highly iterative in nature – meaning
that partial working product is delivered to customers often. Iteration is a prudent risk
mitigation strategy because the partial deliverables uncover risks while there is still time
to alleviate them. Plan-driven approaches promise predictability, stability, and high
assurance. It’s all about picking the right model for the job depending upon the most
important consideration of the project.

4.1 Personal Characteristics of Team
Some background is necessary before describing Boehm and Turner's method. To start,
Boehm and Turner believe the personal characteristics of the people who make up the
software development team are a key factor in determining whether to use an agile or
plan-driven approach. Think about it. A team made up of very experienced team
members is very different from a team that consists of all new people to the technology
and the domain. The technology is the programming language, hardware platform, and so
forth. The domain is the subject area of the program (for example, medical software or
networking software). To classify individual skill level, Boehm and Turner adopted and
then adapted the classification scheme of Alistair Cockburn (Cockburn, 2001), as shown
in Table 7. In the table, the term method refers to a single (or set of) software
development practice (such as eliciting requirements or automating tests).

Table 7: Levels of Software Method Understanding and Use (adapted from (Boehm and

Turner, June 2003))

Level Characteristics Applicability
3 Able to revise a method, breaking its

rules to fit an unprecedented new
situation.

Can function well on any team.

2 Able to tailor a method to fit a
precedented situation. With training,
some can become Level 3.

Can function well in managing a
small, precedented agile or plan-driven
project but need the guidance of level
3s in unprecedented situations.

1A With training, able to perform
discretionary method steps such as
providing resource estimates to decide
which requirements should be included
each release. With experience, can
become Level 2.

Can function well on both agile and
plan-driven teams that have enough
Level 2 people to guide them.

1B With training, able to perform
procedural method steps such as coding
a simple program, following coding
standards, or running tests. With
experience can master some Level 1A
skills.

Function well in performing
straightforward development in a
stable situation. Would likely slow an
agile team, particularly if a large
percentage of the team was made up of
1B people.

-1 May have technical skills, but unable or
unwilling to collaborate or follow
shared methods.

Transfer to other work.

Risk Management

© Laurie Williams 2004 14

It is important to consider both technology and domain expertise when considering a
person’s skill level. A Level 3 expert in an object-oriented language such as Java
developing software for the retail industry might temporarily revert back to being a Level
1B if moved to an assignment like developing a compiler in a functional language such as
Haskell. This person’s prior expertise enables him to fairly rapidly advance through the
skill levels, most likely to the old Level 3. However, it is important to consider the
person’s current (not potential) skill level when considering the make up of the team
relative to agile and plan-driven methods.

4.2 Agile and Plan-Driven Home Grounds
Boehm and Turner have observed projects succeed that have used purely an agile
approach, they have observed projects succeed with purely plan-driven methods, and they
have observed projects succeed with hybrid methods. Based on these experiences, they
share the project characteristics of agile “home grounds” and plan-driven “home
grounds” where home ground is defined as the situation for which each is best suited.
These home grounds are summarized in Table 8.

Risk Management

© Laurie Williams 2004 15

Table 8: Agile and Plan-driven Home Grounds (adapted from (Boehm and Turner, June
2003))

Project Characteristics Agile Home Ground Plan-Driven Home Ground
Application
Primary goals Rapid value, responding to

change.
Predictability, stability, high
assurance.

Size Smaller teams and projects. Larger teams and projects.
Environment Turbulent, high change,

project focused.
Stable, low change, project
and organization focused.

Management
Customer relations Dedicated on-site customer,

focused on prioritized product
releases (increments).

As-needed customer
interactions, focused on
fulfilling a contract.

Planning and control Team has an understanding of
plans and monitors to this
plan.

Documented plans and
explicit monitoring to plans.

Communications Passed from person to person
(tacit, interpersonal).

Knowledge documented in
team artifacts (explicit).

Technical
Requirements Prioritized, informal stories

and test cases. Requirements
are likely to change in
unpredictable ways.

Formalized requirements.
Requirements may change in
predictable ways.

Development Simple design, short
increments

Extensive design, longer
increments.

Test Automated, executable test
cases are used to further
define the specifics of the
requirements.

Documented test plans and
procedures.

Personnel
Customers Dedicated, co-located

CRACK* performers.
CRACK performers, not
always co-located.

Developers
(See Section 4.1)

At least 30% Level 2 and 3
experts; no level 1B or Level
-1 personnel.

50% Level 3s early; 10%
throughout; 30% Level 1B’s
workable; no Level -1s.

Culture Team enjoys being
empowered and having
freedom (thriving on chaos).

Team is empowered via
freedom embodied in policies
and procedures (thriving on
order).

* CRACK = Collaborative, Representative, Authorized, Committed, and Knowledgeable

Risk Management

© Laurie Williams 2004 16

4.3 Critical Factors and the Polar Chart
The analysis of the home grounds in Table 8 and the general characteristics of agile and
plan-driven methods led Boehm and Turner to define five critical factors that can be used
to describe a project environment and can be used to help determine the appropriate
balance between agile and plan-driven methods. These five factors, intended to guide the
choice of the right balance between flexibility and structure, are shown in Table 9.

Table 9: The Five Critical Agility and Plan-Driven Factors
(adapted from (Boehm and Turner, June 2003))

Factor Agility discriminators Plan-driven discriminators

Size
(Number of people on
team)

Well matched to small
products and teams; reliance
on person-to-person
knowledge transfer and
retention limits scalability.

Methods evolved to handle
large projects and teams;
hard to tailor down to small
projects.

Criticality
(The impact of a
software defect in terms
of comfort, money,
and/or lives)

Untested on safety-critical
products; potential
difficulties with simple
design and lack of
documentation.

Methods evolved to handle
highly critical products; hard
to tailor down efficiently to
low-criticality products.

Dynamism
(The degree of
requirements and
technology change)

Simple design and
continuous restructuring is
excellent for highly dynamic
environments, but present a
source of potentially
expensive rework for highly
stable environments.

Detailed plans and “big
design up front” excellent for
highly stable environments,
but a source of expensive
rework for highly dynamic
environments.

Personnel
(Skill level of team)

Require continuous presence
of a critical mass of scarce
Level 2 or 3 experts; risky to
use non-agile Level 1B
people.

Need a critical mass of Level
2 and 3 experts during
project definition, but can
work with fewer later in the
project. Can usually
accommodate some Level
1B people.

Culture
(Whether the individuals
on the team prefer
predictability/order or
change)

Thrive in a culture where
people feel comfortable and
empowered by having many
degrees of freedom; thrive on
chaos.

Thrive in a culture where
people feel comfortable and
empowered by having their
roles defined by clear
policies and procedures;
thrive on order.

Boehm and Turner have created a polar chart as a means for visually displaying a team’s
values for each of these criticality factors. An example of such a polar chart can be found
in Figure 2. Each of the five factors has an axis. Each of the axes is labeled with carefully
chosen values based on the authors’ history. For each axis, the further from the graph’s

Risk Management

© Laurie Williams 2004 17

center, the more conducive the method is toward plan-driven methods. Conversely, the
more points lie toward the center of the chart, the more a project would likely benefit
from agile methods.

Consider the black line joining the points of a sample project in Figure 4.2. Starting at the
top of the chart, this team is comprised of a large number of novices and a small number
of experts. Additionally, the requirements are not expected to change much throughout
the project. The team members have a fairly strong preference for order and predictability.
There are about 15 people on the team. The impact of a software defect is in essential
funds. To clarify, an impact of “essential funds” indicates that a business could lose a
large amount of money if there was a defect in the software. For example, our auction
application could cause a loss of a large amount of money due to a software defect, as
could software that ran a grocery store. Based on the shape of the polar chart for this
particular application, the team would be best served by a plan-driven software
development methodology.

Figure 2: Example Polar Chart. (adapted from (Boehm and Turner, June 2003))

4.4 Risk-Driven Method for Balancing Agile and Plan-Driven
Methods

With this background, you can now understand Boehm and Turner’s five-step, risk-
driven method for balancing agile and plan-driven methods. Each of the five steps will
now be explained. The interactions between the steps are displayed in Figure 3.

Risk Management

© Laurie Williams 2004 18

Step One: Risk Analysis
Three different areas of risk are analyzed: environmental, agile, and plan-driven. Each of
these areas is now defined.

• Environmental risks – risks that result from the project’s general environment, as
discussed in the earlier sections of this chapter and enumerated in Table 1.

• Agile risks – risks that are specific to the use of agile methods. Some of these are
issues related to the ability of agile methods to scale to larger teams and projects
and to handle the reliability needs of critical projects. Additionally, there are agile
risks associated with not thoroughly documenting prior to coding, with the
potential of personnel turnover/churn, and with having enough skilled people.

• Plan-driven risks – risks that are specific to the use of plan-driven methods. Some
of these issue relate to the ability of plan-driven methods to handle rapid
technology and/or requirements change, the need to deliver rapid results, and/or
having enough team members skilled in plan-driven methods.

If not enough information is known about any of these risks, some resources can be spent
to obtain some information about the project’s aspects until the team feels more confident
about the project risks.

Step Two: Risk Comparison
After the risks are identified, the team assesses and compares them. If the plan-driven
risks outweigh the agile risks (meaning the issues related to using a plan-driven
methodology are more concerning), then the team should adopt an agile method and
proceed to Step Four. If the agile risks outweigh the plan-driven risks, then the team
should adopt a plan-driven method and proceed to Step Four. If neither dominates – and
the project characteristics do not clearly lie in the agile or plan-driven home ground –
then the team should proceed to Step Three.

Step Three: Architecture Analysis
The optional Step Three is done when the project characteristics do not clearly lie in
either the agile or plan-driven home ground or when parts of the system lie in an agile
home ground and other parts of the system lie in the plan-driven home ground. If possible,
the team develops a system architecture so that the team is able to use agile methods on
the parts of the system where their strengths can be best applied. The remainder of the
system is developed via plan-driven methods.

Step Four: Tailor Life Cycle
A project strategy is developed to address the risks identified in Step One, as was
discussed earlier in the chapter. The life-cycle process is tailored around the identified
risk patterns.

Step Five: Execute and Monitor
Consistent with the need to consistently monitor risk items, as discussed earlier in the
chapter – the team must consistently reassess the risks related to agile and plan-driven
methods. If the risk profile changes, the team should consider their choice of process
model.

Risk Management

© Laurie Williams 2004 19

Figure 3: Boehm and Turner’s Five Step Risk-Based method for balancing Agile and
Plan-Driven methods. (adapted from (Boehm and Turner, 2003; Boehm and Turner, June

2003))

5 Summary
Several practical tips for risk management were presented throughout this chapter. The
keys for successful risk management are summarized in Table 10.

Risk Management

© Laurie Williams 2004 20

Table 10 Key Ideas for Risk Management

 Be proactive about managing risk or you’ll constantly be in crisis-driven, fire-
fighting mode.

 Systematically surface risks by meeting with marketing and the customer, by
using checklists and taxonomies, by comparing with past projects, and by
decomposing large, unwieldy risks into smaller, more manageable risks.

 All the stakeholders must communicate about risks throughout the entire
development cycle. Communication is at the center of the risk management
process.

 Prioritize risks by computing the risk exposure of each risk. Sort the list of risks
based upon the risk exposure and proactively manage those on the top of the list.

 Develop a “Top 10” risk list for your projects. It is likely that this “Top 10” list
will contain risks that will appear on your next projects as well.

 Utilize a risk-driven process for choosing between an agile and a plan-driven
process, or a hybrid of the two.

In the risk management cycle, product and project risks are identified, analyzed, and
prioritized. The top-ranking risks are planned and mitigated. All risks are monitored. It is
important for a project to focus on its critical success factors while keeping an eye on its
risk factors. Risk management practices enable the team to find the opportunity in the
risk items. Be proactive!

Glossary of Chapter Terms

Word Definition Source
Risk potential future harm that may arise from some present

action
(Wikipedia,
2004)

Risk
Exposure

the product of the probability of a risk occurring multiplied
by the magnitude of the loss if the risk did occur

(Boehm,
1989)

Risk
Leverage

the quotient of the difference of the risk exposure before
risk reduction minus the risk exposure after risk reduction,
divided by the cost of risk reduction

(Pfleeger,
1998)

Risk
Management

series of steps whose objectives are to identify, address,
and eliminate software risk items before they become
either threats to successful software operation or a major
source of expensive rework

(Boehm,
1989)

References

Boehm, B. (1989). Software Risk Management. Washington, DC, IEEE Computer

Society Press.
Boehm, B. (January 1991). "Software Risk Management: Principles and Practices."

IEEE Software: 32-41.
Boehm, B. and R. Turner (2003). Balancing Agility and Discipline: A Guide for the

Perplexed. Boston, MA, Addison Wesley.

Risk Management

© Laurie Williams 2004 21

Boehm, B. and R. Turner (June 2003). "Using Risk to Balance Agile and Plan-Driven
Methods." IEEE Computer 36(6): 57-66.

Bruegge, B. and A. H. Dutoit (2000). Object-Oriented Software Engineering:
Conquering Complex and Changing Systems. Upper Saddle River, NJ, Prentice
Hall.

Cockburn, A. (2001). Agile Software Development. Reading, Massachusetts, Addison
Wesley Longman.

Gluch, D. P., "A Construct for Describing Software Development Risks," Software
Engineering Institute, Pittsburgh, PA CMU/SEI-94-TR-14.

Gupta, U. G. and R. E. Clarke (1996). "Theory and Applications of the Delphi Technique:
A bibliography (1975-1994)." Technological Forecasting and Social Change 53:
185-211.

Hall, E. M. (1998). Managing Risk: Methods for Software Systems Development,
Addison Wesley.

Larman, C. (2004). Agile and Iterative Development: A Manager's Guide. Boston,
Addison Wesley.

Pfleeger, S. L. (1998). Software Engineering: Theory and Practice. Upper Saddle River,
NJ, Prentice Hall.

Standish (1995). "The Chaos Report."
Van Scoy, R. L., "Software Development Risk: Opportunity, Not Problem," Software

Engineering Institute, Pittsburgh, PA CMU/SEI-92-TR-030.
Wikipedia (2004). Wikipedia, The Free Encyclopedia. http://www.wikipedia.org.

Chapter Questions
1. The Jones family has just moved in a new house. Mr. Jones did some research of this

area and found out that the probability for a house to be flooded once in a six-month
period is 0.5% and no house has flooded twice in a six-month period. Additionally,
Mr. Jones evaluated that, in case a flood would happen, the property damage would
be $4,000, on average. If Mr. Jones wants to buy flood insurance, what should he pay
for a six-month policy based upon his research?

2. (Continued from Question 1) It is not possible for an insurance company to provide a

rate quote as low as Mr. Jones likes it to be (or the insurance company wouldn’t make
any money!) After contacting several insurance companies, Mr. Jones found out that
the lowest rate is $50 every six months. Compute the risk leverage if Mr. Jones buys
the insurance. (Assume that the insurance company would pay $4,000 dollars if the
flood occurs.)

3. Believe it or not, buying music CD can be a risky business. One day, your friend tells

you that your favorite band has just released a new CD, and it is awesome (in her
opinion, anyway). Complete a risk table for buying a new CD in order to minimize
your risk.

4. A college student often has several assignments due each week. What are some of the

factors a college student should think about in doing risk management for his or her

Risk Management

© Laurie Williams 2004 22

assignments?

5. Explain the five critical agile and plan-driven factors.

