ENTERPRISE SECURITY ARCHITECTURE WITH INFORMATION GOVERNANCE

by Kris Kimmerle

ABOUT THE AUTHOR

Hi.

My name is Kris Kimmerle.

I have 9 years of comprehensive and international experience in the following domains.

Business Continuity Planning	Security Intelligence Technician	Project Management	Chain of Custody	Duty Segregation	
Disaster Recovery Planning	Physical Security Management	Agile Project Management	Change Management	Defense-in-Depth	
Risk Management	Security Operations Management	SharePoint Administrator	IdM Solutions	Supply Chain Processes	
Vulnerability Management	Business Operations Management	Enterprise Application Development	Repudiation	Enterprise Risk Management	
Threat Profiling	Information Security Instructor	Enterprise Architecture	Automation	ISO 27000 Family of Standards	
Compliance Management	Third Party Risk Management	Enterprise Security Architecture	Security Awareness	Simplicity in Complex Security	
Auditor	Asset Management	Security Analyst	Access Control	Flexibility in Security	
Information Security Instructor	Network Operations	Cloud Computing	MySQL	Interoperability	

Let's get started.

PURPOSE

\checkmark	Basic understanding of enterprise architecture framework
\checkmark	Basic understanding of enterprise architecture framework
\checkmark	Basic understanding of information governance
\checkmark	Ability to measure the effectives of your efforts
\checkmark	Ability to build an effective information security management program

TERMINOLOGY

Framework

A statement of what the business unit or organization would like to develop into

Vision

Defining direction and making decisions on allocating resources in pursuit of a strategic goal.

Strategic Planning

Serves as a guide for creating or expanding a structure into something of value.

Taxonomy

Any measureable, tangible, verifiable outcome, result, or item that must be produced to complete a project or part of a project

Deliverables

Standardization

The act of checking or adjusting (by comparison with a standard) the accuracy of a measuring instrument The science of classification according to a pre-determined system whose resulting catalogue is used to provide a conceptual framework

Risk

Risk Management

Business Driver

An uncertain event or set of events which, should it occur, will have an effect on the achievement of objectives. A risk consists of a combination of the probability of a perceived threat or opportunity occurring and the magnitude of its impact on objectives.

The systematic application of management policies, procedures, and practices to the tasks of communicating, establishing the context, identifying, analyzing, evaluating, treating, monitoring, and reviewing risk.

A resource, process or condition that is vital for the continued success and growth of a business.

Matrix

"Data about data". Structural metadata is about the design and specification of data structures and is more properly called "data about the containers of data"; descriptive metadata, on the other hand, is about individual instances of application data, the data content.

Metadata

Metamodel

The analysis, construction and development of the frames, rules, constraints, models and theories applicable and useful for modeling a predefined class of problems.

A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns.

OVERVIEW

What is Enterprise Security Architecture?

Enterprise Security Architecture is the process of translating business security vision and strategy into effective enterprise change by creating, communicating and improving the key security requirements, principles and models that describe the enterprise's future security state and enable its evolution.

Why is it important?

Enterprise Security Architecture is not about developing for a prediction. it is about ensuring that we develop in a way that allows us to maintain and sustain our agility to change. We don't know where we are going or how we are going to get there but we need to be ready.

ARCHITECTURE FRAMEWORKS

ZACHMAN	The Zachman Framework is an enterprise architecture framework which provides a formal and highly structured way of viewing and defining an enterprise. It consists of a two dimensional classification matrix based on the intersection of six communication questions (What, Where, When, Why, Who and How) with five levels of reification, successively transforming the most abstract ideas (on the Scope level) into more concrete ideas (at the Operations level).
TOGAF	The Open Group Architecture Framework (TOGAF) is a framework for enterprise architecture which provides a comprehensive approach for designing, planning, implementing, and governing an enterprise information architecture. TOGAF is a high level and holistic approach to design, which is typically modeled at four levels: Business, Application, Data, and Technology. It tries to give a well-tested overall starting model to information architects, which can then be built upon. It relies heavily on modularization, standardization, and already existing, proven technologies and products.
SABSA	SABSA (Sherwood Applied Business Security Architecture) is a framework and methodology for Enterprise Security Architecture and Service Management. It was developed independently from the Zachman Framework, but has a similar structure. SABSA is a model and a methodology for developing risk-driven enterprise information security architectures and for delivering security infrastructure solutions that support critical business initiatives.

The Zachman and TOGAF are true Enterprise Architecture frameworks however SABSA is the main framework for Enterprise Security Architecture. More importantly The SABSA framework is most effective when integrated or linked with one of these more robust Enterprise Architecture frameworks. Today we will be talking about the integration to the Zachman and TOGAF frameworks.

effective as it used to be.

This is the new framework integration for SABSA. This framework carries with it many tools that exponentially increase its effectiveness.

60

TOGAF

SABSA

ZACHMAN 🖘 SABSA

Matrix

There was a time when a company could leverage a single matrix for their information security risk management program but in today's rapidly changing and agile dependent world, this is no longer possible.

TOGAF 🗢 SABSA

Metamodel

Lifecycle

This level of insight, detail, and complexity allows our business to remain agile and competitive in todays world.

Let's start with the taxonomy.

Reputable

Ļ	\downarrow
Business Strategy	Management
Brand Enhancing	Automated
Business-Enabled	Change Managed
Competent	Controlled
Confident	Cost-Effective
Credible	Efficient
Governable	Maintainable
Good Provider	Measured
Good Stewardship	Supportable
Good Custody	
Investment	
Reuse	

Ļ
Technical Strategy
Architecturally Open
COTS/GOTS
Extendible
Flexible / Adaptable
Future-Proof
Legacy-Sensitive
Migration Capable
Multi-Sourced
Scalable
Simple
Standards Compliant
Traceable
Upgradable

Business Attributes Operational Available Detectable Error-Free Interoperable Productive

Recoverable

Risk Management Access Controlled Accountable Assurance Integrity

Auditable

Authenticated

Legal / Regulatory Admissible Compliant Enforceable

Insurable

User Accessible Accurate Consistent Current Liability Managed Duty Segregated Resolvable Educated & Aware Time-bound

Informed Motivated Protected Reliable Supported Timely Usable

Authorized Capturing New Risks Confidential Crime-Free Flexibly Secure Identified Independently Secure In our sole possession

Non-Repudiable

Owned Private

Trustworthy

ENTERPRISE SECURITY ARCHITECTURE 20

Business Attributes

R

Upgradable

The highlighted areas are the items that we normally have the greatest interest and focus in when we consider information security

	•	
Business Strategy	Management	Technical Strategy
Brand Enhancing	Automated	Architecturally Open
Business-Enabled	Change Managed	COTS/GOTS
Competent	Controlled	Extendible
Confident	Cost-Effective	Flexible / Adaptable
Credible	Efficient	Future-Proof
Governable	Maintainable	Legacy-Sensitive
Good Provider	Measured	Migration Capable
Good Stewardship	Supportable	Multi-Sourced
Good Custody		Scalable
Investment		Simple
Reuse		Standards Compliant
Reputable		Traceable

	\downarrow
perational	Risk Management
Available	Access Controlled
Detectable	Accountable
Error-Free	Assurance
teroperable	Integrity
Productive	Auditable
ecoverable	Authenticated
	Authorized
	Capturing New Risks
	Confidential
	Crime-Free
	Flexibly Secure
	Identified
	Independently Secure
	In our sole possession
	Non-Repudiable
	Owned
	Private

Trustworthy

\downarrow
Legal / Regulatory
Admissible
Compliant
Enforceable
Insurable
Liability Managed
Resolvable
Time-bound

ENTERPRISE SECURITY ARCHITECTURE

21

Matrix.

	Assets (what)	Motivation (why)	Process (how)	People (who)	Location (where)	Time (when)
	Business Decisions	Business Risk	Business Processes	Business Governance	Business Geography	Business Time Depends
Context	Business Asset Taxonomy, Goals, Objectives	Opportunities Exploits Threats	Inventory Of Operational Processes	Organizational Structure & Extensions	Buildings, Sites Jurisdictions, Territories	Time Dependencies with Objectives
	Business Knowledge	Risk Management Objectives	Strategies for Assurance	Roles & Responsibilities	Domain Framework	Time Management
Conceptual	Business Attributes Profile	Enablement & Control Objectives	Process Mapping Framework, Strategies	Owners, Custodians, Service Providers	Security Domain Concepts & Framework	Through-Life Risk Management Framework
	Information Assets	Risk Management Policies	Process Maps	Entity & Trusts	Domain Maps	Calendar & Timetables
Logical	Inventory of Information Assets	Domain Policies	Information Flows, Service Architecture	Entity Schema, Trust Models, Privilege Profiles	Domain Definitions and Associations	Start Times, Lifetimes, Deadlines
	Data Assets	Risk Management Practices	Process Mechanisms	Human Interface	Infrastructure	Processing Schedule
Physical	Data Dictionary & Data Inventory	Risk Management Procedures & Guidelines	Applications Systems, Security Mechanisms	User Interface, Systems, Access Control System	Host Platforms, Layouts, Network Topologies	Timing & Sequencing of Processes
	Compute	Risk Management Tools	Process Tools	Tools & Standards	Locator Tools	Step Timing & Sequences
Component	Products, Data, Repositories, Processors	Risk Analysis, Reports, Registers,	Tools, Protocols, Process Delivery	Identities, Job Descriptions, Roles, Functions	Nodes, Addresses, & other Locations	Time Schedules, Clocks, Timers, Interrupts
	Service Delivery	Operational Risk	Process Delivery	Personnel Management	Environment	Time & Performance
Service	Assurance of Operational Continuity	Risk Assessments, Monitoring, Treatment	Management & Support of Systems	Account Provisioning, User Support	Management of Building, Sites, Networks	Management of Calendar and Timetable

Metamodel.

Architecture Principles, Vision, and Requirements							
Preliminary	Architecture Vision						
Architecture Principles	Business Strategy	Technology Strategy	Business Principles	Vision Statement	Stakeholders		
Architecture Requirements							
Requirements Constraints		As	sumptions		Gaps		

Opportunities, Solutions, and Migration Planning				Implementation Governance		
Capabilities	Work Packages	Architecture Contracts		Standards	Guidelines	Specifications

Lifecycle.

Requirements

Requirements management plays a central role in architecture work. This is recognized in both TOGAF and SABSA. The TOGAF method validates and updates business requirements in every stage of an architecture development project. However, TOGAF does not provide a concrete technique for describing or documenting requirements. In contrast, SABSA presents its unique Business Attribute Profiling technique as a means to effectively describe requirements. This section describes the use of Business Attribute Profiling with respect to security requirements management, along with the added value this technique offers for requirements management in general. Together, the TOGAF concept of validating architecture and validating and updating requirements based upon information uncovered during the development of the architecture and SABSA's Business Attribute Profiling improve requirements management, traceability, and architecture development.

Architecture in general should provide continuous alignment of capabilities with business goals and support achieving these goals in an effective and efficient manner, even when the environment or business goals change. This alignment is in many cases the major rationale for using methodologies such as TOGAF and SABSA and therefore both frameworks define a requirements management process to ensure this continuous alignment.

Preliminary

To build the security context, the following security artifacts need to be determined during this phase. These artifacts can be integrated into existing architecture documentation, but it is important that they be properly identified and that they convey the necessary information to make quality decisions:

Business Drivers for Security – the subset of TOGAF business drivers impacting security, presented as an integral part of the overall architecture business drivers artifact or deliverable.

Security Principles – the subset of Business Principles addressing security architecture. This is presented as an integral part of the overall Architecture Principles artifact or deliverable. Security principles like other architecture principles will provide valuable guidance to making business decisions to comply with the enterprise's risk appetite.

Key Risk Areas – the list of the key risk areas within the architecture scope. The key risk areas should be related to the business opportunities which the security architecture enables using the risk appetite artifact which informs the balance of risk versus opportunity. The key risk area should be included in the overall architecture risk management deliverable produced during the Preliminary Phase.

Risk Appetite – describes the enterprise's attitude towards risk and provides decisionmaking guidance to the organization to balance the amount of risk taken to achieve an expected outcome. The risk appetite could be expressed as, for example, a boundary on a risk/business impact and likelihood grid, profit, and loss measures or qualitative measures (zero tolerance for loss of life or regulatory compliance breaches). Risk appetite can also be represented by suitably worded security principles or produced as a stand-alone deliverable if a key stakeholder exists who needs to specifically approve it. It defines the level of risk (damage) that the organization is willing to accept and what their strategy is in defining this level. For risks above this acceptable level, it defines the strategy used for mitigation (transference, avoidance).

Security Resource Plan – based on the content of the artifacts and the characteristics of the planned architecture project, it must be decided during the Preliminary Phase which security resources are required to deliver the security elements. Finding answers to the following questions through sufficient stakeholder analysis in the Preliminary Phase can help determine the security-related effort required:

Architecture Vision describes enough of the TOGAF ADM Phases B, C, and D to ensure that key stakeholders can agree to the end-state which represents a solution to a defined problem. In Phase A sufficient security-specific architecture design is carried out to... 1. Satisfy the security stakeholders that the end-state does not represent any unknown or unacceptable risk and aligns with corporate policies, standards, and principles and 2. Satisfy business stakeholders – in particular those who control the budget – that the security architecture is instrumental in enabling and supporting the overall architecture required to deliver the business opportunities and benefits identified.

The security elements of Phase B: Business Architecture comprise business level trust, risk, and controls, independent from specific IT or other systems within the specific scope of the architecture engagement.

• Business Risk Model – the business risk model determines the cost (both qualitative and quantitative) of asset loss/impact in failure cases. It is the result of a risk assessment, based on identified threats, likelihood of materializing, and impact of an incident. Business impact should be aligned with the definitions in the Business Attribute Profile which act as pseudo-assets. Security classification should be carried out at this stage based on the risks identified. The business risk model is a detailing of the risk strategy of an organization. All information in the enterprise should have an owner and be classified against a business-approved classification scheme. The classification of the information determines the maximum risk the business is willing to accept, and the owner of the information decides what mitigation is enough for his/her information. These two aspects determine the context for the business risk model.

• Applicable Law and Regulation – determines the specific laws and regulations that apply within the scope of the enterprise architecture engagement.

• Control Frameworks – determine the suitable set of control frameworks that would best satisfy the requirements and address the risks related to the engagement scope and context.

 Security Domain Model – a security domain represents a set of assets in the engagement scope which could be described by a similar set of business attributes (i.e., a security domain has a set of very similar business attributes for all entities in that domain). The security domain model describes the interactions between the various domains, parties, and actors and must be aligned with the Business Architecture model. This includes defining all people, processes, and system actors known at this stage, including third parties and external actors. The security domain model helps in defining responsibility areas, where responsibility is exchanged with external parties and distinguishes between areas of different security levels and can inform the engagement scope.

• Trust Framework – the trust framework describes trust relationships between various entities in the security domain model and on what basis this trust exists. Trust relationships can be unidirectional, bidirectional, or non-existent. The onus for assessing trust is the responsibility of those choosing to enter into the contracts and their legal counsel. It is important to note that technology (e.g., digital certificates, SAML, etc.) cannot create trust, but can only convey in the electronic world the trust that already exists in the real world through business relationships, legal agreements, and security policy consistencies.

Security Organization – the corporate organization of risk management and information security which
assigns ownership of security risks and defines the security management responsibilities and processes.
Security management processes include risk assessment, the definition of control objectives, the definition
and proper implementation of security measures, reporting about security status (measures defined, in place,
and working) and the handling of security incidents.

• Security Policy – the security policy addresses the alignment of operational risk management in general with the various security aspects such as physical security, information security, and business continuity. Within the scope of the architecture engagement, decide which existing policy elements can be re-used or have to be developed new.

• Security Services - a list of security-related business services, defined as part of the Business Services.

The security elements of Phase C: Information Systems Architectures comprise information system-related security services and their security classification.

• Classification of Services – the assignment of a security classification to the list of services in the Information System Services catalog according to the enterprise classification scheme. In most cases this scheme is defined and described in the corporate information security policy and is based on the information processed or stored by the service.

• Security Rules, Practices, and Procedures – are relevant artifacts for solutionlevel architectures. They are mentioned here because at the solution architecture level guidelines and designs for rules, practices, & procedures are expected to be produced in Phase C & D.

D. Technology Architecture

The security elements of Phase D: Technology Architecture comprise security rules, practices and procedures, and security standards:

• Security Rules, Practices, and Procedures – artifacts mainly relevant for solutionlevel architectures, mentioned here because at solution architecture level guidelines and designs for rules, practices, and procedures are expected to be produced in Phase C and D.

• Security Standards – guide or mandate the use of technical, assurance, or other relevant security standards. The artifact is expected to comprise publicly available standards such as Common Criteria, TLS, and SAML.

E. Opportunity and Solutions

No specific security-related architecture artifacts are produced in this phase. However, in defining the roadmap and deciding which architecture elements must be implemented first, it is imperative that the security risks are evaluated and that risk owners are consulted when defining the place on the roadmap for high priority mitigations. This phase could also be used to verify the process and results, feeding back to the business goals and drivers.

F. Migration Planning

No specific security architecture aspects apply to this phase; however, as part of the overall planning care must be taken to ensure that, for each stage on the roadmap, appropriate risks and associated controls are identified.

G. Implement Governance

Security architecture implementation governance provides assurance that the detailed design and implemented processes and systems adhere to the overall security architecture. This ensures that no unacceptable risk is created by deviations from Architecture Principles and implementation guidelines.

• Security Management – definition of the detailed security roles and responsibilities, implementation of security governance, definition of security key performance and risk indicators, etc.

• Security Audit – reports which include security reviews of implemented processes, technical designs, and developed code against policies and requirements, and security testing comprising functional security testing and penetration testing.

• Security Awareness – implement necessary training to ensure correct deployment, configuration, and operations of security-relevant subsystems and components; ensure awareness training of all users and non-privileged operators of the system and/or its components.

Business Driver Security Principles Key Risk Areas Risk Appetite Assessment Plan Security Stakeholders Business Risk Model Law and Regulation Control Frameworks Security Domain Trust Framework **Risk Management H.** Architecture Security Organization Security Governance Change Management Security Policy Security Services Business Attributes Security Awareness Security Services Requirements Security Audit Classification Security Management Control Objectives Procedures Guidelines Security Standards

Change is driven by new requirements or changes in the environment. Changes in security requirements can, for instance, be caused by changes in the threat environment, changed compliance requirements, or changes due to discovered vulnerabilities in the existing processes and solutions. Changes required due to security-related causes are often more disruptive than a simplification or incremental change.

• Risk Management – the process in which the existing architecture is continuously evaluated regarding changes to business opportunity and security threat. If based on the results of this process, the current architecture is deemed unsuitable to mitigate changed or new risks or constrains the business too much in exploiting new opportunities, a decision on architecture change must be made.

• Security Architecture Governance – the process in which decisions are made on changes to the existing architecture, either by minor changes in the current iteration or by means of a completely new iteration.

INFORMATION GOVERNANCE

Why is Information Governance important?

Architecture will define the way. Governance will keep you on the path.

What does Information Governance mean?

Organized.

Proactive Users

ENTERPRISE SECURITY ARCHITECTURE 44

End User Awareness

ENTERPRISE SECURITY ARCHITECTURE 45

Measured.

CAPABILITY MATURITY MODEL

Level 5 Optimizing	It is a characteristic of processes at this level that the focus is on continually improving process performance through both incremental and innovative technological changes/improvements.
Level 4 Managed	It is characteristic of processes at this level that, using process metrics, management can effectively control the AS-IS process (e.g., for software development). In particular, management can identify ways to adjust and adapt the process to particular projects without measurable losses of quality or deviations from specifications. Process Capability is established from this level.
Level 3 Defined	It is characteristic of processes at this level that there are sets of defined and documented standard processes established and subject to some degree of improvement over time. These standard processes are in place (i.e., they are the AS-IS processes) and used to establish consistency of process performance across the organization.
Level 2 Repeatable	It is characteristic of processes at this level that some processes are repeatable, possibly with consistent results. Process discipline is unlikely to be rigorous, but where it exists it may help to ensure that existing processes are maintained during times of stress.
Level 1 Initial (Chaotic)	It is characteristic of processes at this level that they are (typically) undocumented and in a state of dynamic change, tending to be driven in an ad hoc, uncontrolled and reactive manner by users or events. This provides a chaotic or unstable environment for the processes

Let's recap.

What is Enterprise Security Architecture?

The translation of the businesses vision and strategy into effective enterprise change by creating, communicating and improving the key requirements, principles and models that describe the enterprise's future information security state and enable its evolution.

What is Information Governance?

The discipline and framework to ensure simplicity, organization, consistency, reliability, education, and measurements are well-articulated and achievable.

Enterprise Security Architecture + Information Governance

= Successful & Robust Information Security Management Program

REFERENCES

The American Institute of Architects	2004	Security Planning and Design	
National Institute of Standards and Technology	2013	NIST Special Publication 800-16 Rev. 1	60
H. Tipton and M. Krause	2006	Information Security Management Handbook	@
Cramsession.com	2007	Building a Defense in Depth Toolkit	@
The Open Group	2013	TOGAF and SABSA Integration White Paper	8
(ISC) ²	2011	Official Guide to the ISSAP CBK, Second Edition	60

Send me a message.

