

Operating System Deadlocks

What Is In This Chapter?

· What is a deadlock?

· Staying Safe: Preventing and Avoiding Deadlocks

· Living Dangerously: Let the deadlock happen, then detect it and recover from it.

DEADLOCKS

EXAMPLES:

· "It takes money to make money".

· You can't get a job without experience; you can't get experience without a job.

BACKGROUND:

The cause of deadlocks: Each process needing what another process has. This results from sharing resources such as memory, devices, and links.

Under normal operation, a resource allocations proceed like this:

1. Request a resource (suspend until available if necessary).
2. Use the resource.
3. Release the resource.

Bridge Crossing Example:

[image:]

· Traffic only in one direction.
· Each section of a bridge can be viewed as a resource.
· If a deadlock occurs, it can be resolved if one car backs up (Preempt resources and rollback).
· Several cars may have to be backed up if a deadlock occurs.
· Starvation is possible.

NECESSARY CONDITIONS

ALL of these four must happen simultaneously for a deadlock to occur:

· Mutual exclusion:

One or more than one resource must be held by a process in a non-sharable (Exclusive) mode.

· Hold and Wait

A process holds a resource while waiting for another resource.

· No Preemption

There is only voluntary release of a resource - nobody else can make a process give up a resource.

· Circular Wait

Process A waits for Process B waits for Process C	waits for Process A.

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

Follow the video link please

[bookmark: _GoBack]https://ocw.vu.edu.pk/Videos.aspx?cat=Computer+Science%2fInformation+Technology+&course=CS604

image3.jpeg
+ If the graph contains no cycles, then no process is deadlocked.
» If there is a cycle, then:
a) If resource types have multiple instances, then deadlock MAY exist.

b) If each resource type has 1 instance, then deadlock has occurred.
Ay L

. .
"\ i /
Resource allocation graph =———> _<

P2 Requests P3

R3 Assigned to P3

v

image4.jpeg
DEADLOCKS RESOURCE
ALLOCATION GRAPH

Resource allocation graph

Resource allocation graph with a cycle but no deadlock.
with a deadlock. /

i
—
@
R,
n ~ @

image5.jpeg
DEADLOCKS

Strategy

HOW TO HANDLE DEADLOCKS - GENERAL STRATEGIES

There are three methods:

Ignore Deadlocks: ~+———

Most Operating systems do this!!

Ensure deadlock never occurs using either

Prevention Prevent any one of the 4 conditions from happening.

Avoidance Allow all deadlock conditions, but calculate cycles about to
happen and stop dangerous operations..

Allow deadlock to happen. This requires using both:

Detection Know a deadlock has occurred.

Recovery Regain the resources.

image6.jpeg
DEADLOCKS Deadlock

Prevention

Do not allow one of the four conditions to occur.

Mutual exclusion:
a) Automatically holds for printers and other non-sharables.

b) Shared entities (read only files) don't need mutual exclusion (and aren't
susceptible to deadlock.)
c) Prevention not possible, since some devices are intrinsically non-sharable.

Hold and wait:
a) Collect all resources before execution.

b) A particular resource can only be requested when no others are being
held. A sequence of resources is always collected beginning with the

same one.
¢) Utilization is low, starvation possible.

image7.jpeg
No preemption:

a) Release any resource already being held if the process can't get an
additional resource.

b) Allow preemption - if a needed resource is held by another process, which
is also waiting on some resource, steal it. Otherwise wait.

Circular wait:

a) Number resources and only request in ascending order.

b) EACH of these prevention techniques may cause a decrease in utilization
and/or resources. For this reason, prevention isn't necessarily the best
technique.

c) Prevention is generally the easiest to implement.

image8.jpeg
DEADLOCKS Deadlock

Avoidance

If we have prior knowledge of how resources will be requested, it's possible to
determine if we are entering an "unsafe" state.

Possible states are:
Deadlock No forward progress can be made.
Unsafe state A state that may allow deadlock.

Safe state A state is safe if a sequence of processes exist such that there
are enough resources for the first to finish, and as each finishes
and releases its resources there are enough for the next to finish.

The rule is simple: If a request allocation would cause an unsafe state, do not honor
that request.

NOTE: All deadlocks are unsafe, but all unsafes are NOT deadlocks.

image9.png
UNSAFE

SAFE
DEADLOCK
Only with luck will 0.S. can avoid
processes avoid deadlock.

deadlock.

image10.jpeg
Let's assume a very simple moadel: each process declares its maximum
needs. In this case, algorithms exist that will ensure that no unsafe state is

reached.

EXAMPLE:

There are multiple instances of
the resource in these examples.

There exists a total of 12 tape drives. The current state looks like this:

In this example, < p1, p0, p2 >
is a workable sequence.

Suppose p2 requests and is
given one more tape drive.
What happens then?

Process | Max Needs | Allocated | Current
Needs
Po 10 5 5
P1 4 2 2
P2 9 2 7

image1.png

image2.jpeg
DEADLOCKS RESOURCE
ALLOCATION GRAPH

A visual (mathematical) way to determine if a deadlock has, or may occur.
G=(V,E) The graph contains nodes and edges.

V' Nodes consist of processes = { P1, P2, P3, ..} and resource types
{R1,R2,..}

E Edgesare (Pi,Rj)or (Ri, Pj)

An arrow from the process to resource indicates the process is requesting the
resource. An arrow from resource to process shows an instance of the resource
has been allocated to the process.

Process is a circle, resource type is square; dots represent number of instances of
resource in type. Request points to square, assignment comes from dot.

® = om om

