
 
 

Lecture # 09 
Discrete Structure 



Set Identities 
• Let A and B be subsets of a universal set U 

• Recall the following Definitions  

  A ∪ B = { x ∈U | x ∈ A or x ∈ B} 

  A ∩ B = { x ∈U | x ∈ A and x ∈ B} 

  A – B = { x ∈U | x ∈ A and x ∉ B} 

  Ac = { x ∈U | x ∉ A} 

1. Idempotent Laws 

 a. A ∪ A = A  b. A ∩ A = A 

2. Commutative Laws 

 a.  A ∪ B = B ∪ A  b. A ∩ B = B ∩ A 

3. Associative Laws 

 a.  A ∪ (B ∪ C) = (A ∪ B) ∪ C  

 b.  A ∩ (B ∩ C) = (A ∩ B) ∩ C 

 



Set Identities (Cont.) 
4.  Distributive Laws 

 a. A ∪ (B ∩ C) = (A ∪ B) ∩  (A ∪ B) 

 b. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 

5.  Identity Laws 

 a. A ∪ ∅ = A  b. A ∩ ∅ = ∅ 

 c. A ∪ U = U  d. A ∩ U = A 

6.  Complement Laws 

 a. A ∪ Ac = U b. A ∩ Ac = ∅ 

 c. Uc = ∅   d.  ∅ c = U   

7.  Double Complement Law 

  (Ac)c = A 

8.  DeMorgan’s Laws 

 a.  (A ∪ B)c = Ac ∩ Bc  b. (A ∩ B)c = Ac ∪ Bc 



Set Identities (Cont.) 
9.  Alternative Representation for Set Difference 

 A – B = A ∩ Bc 

10.  Subset Laws 

 a.  A ∪ B ⊆ C iff A ⊆ C and B ⊆ C 

 b. C ⊆ A ∩ B iff C ⊆ A and C ⊆ B 

11.  Absorption Laws 

 a. A ∪ (A ∩ B) = A  b. A ∩ (A ∪ B) = A 



1. Prove that A ⊆ A ∪ B 

Proof:  

Let A, B and C be subsets of a universal set U 

Let x be an arbitrary element of A, that is x ∈A. 

⇒ x ∈A or  x ∈B 

⇒ x ∈A ∪ B 

But x is an arbitrary element of A. 

 ∴ A ⊆ A ∪ B  (proved) 
 

 



2. Prove that A – B ⊆ A 

Proof: 

Let x ∈A – B 

 ⇒  x ∈A and x ∉B (by definition of A – B) 

 ⇒  x ∈A   (in particular) 

But x is an arbitrary element of A – B 

 ∴ A – B ⊆ A   (proved) 



3. Prove that if A ⊆ B and B ⊆ C, then A ⊆ C 

Proof: 

Suppose that A ⊆ B and B ⊆ C 

Consider x ∈A  

 ⇒  x ∈B   (as A ⊆ B) 

 ⇒  x ∈C    (as B ⊆ C) 

But x is an arbitrary element of A 

 ∴  A ⊆ C   (proved) 



4. Prove that A ⊆ B iff Bc ⊆ Ac 

Proof:  

Suppose A ⊆ B  {To prove Bc ⊆ Ac} 

 Let x ∈Bc 

 ⇒  x ∉B  (by definition of Bc) 

 ⇒  x ∉A   

 ⇒  x ∈Ac   (by definition of Ac) 

The contrapositive of “if x ∈A then x ∈B”  is “if x ∉B then x ∉A” 

Thus if x ∉B then x ∉A it means that A ⊆ B 

But x is an arbitrary element of Bc 

  ∴ Bc ⊆ Ac    



4. Prove that A ⊆ B iff Bc ⊆ Ac (Cont.) 

Conversely,  

Suppose Bc ⊆ Ac   {To prove A ⊆ B} 

Let x ∈A 

      ⇒  x ∉ Ac   (by definition of Ac) 

      ⇒  x ∉ Bc   (∴ Bc ⊆ Ac) 

      ⇒    x ∈B    (by definition of Bc) 

But x is an arbitrary element of A 

      ∴ A ⊆ B    (proved) 
 



5. Prove that  A – B = A ∩ Bc 

Proof: 

Let x ∈ A – B 

⇒  x ∈A and x ∉ B (definition of set difference) 

⇒  x ∈A and x ∈ Bc (definition of complement) 

⇒  x ∈ A ∩ Bc  (definition of intersection) 

But x is an arbitrary element of A – B so we can write 

∴ A – B ⊆ A ∩ Bc………….(1) 
 



5. Prove that  A – B = A ∩ Bc (Cont.) 

Conversely, let y ∈ A ∩ Bc 

⇒ y ∈A and y ∈ Bc  (definition of intersection) 

⇒ y ∈A and y ∉ B (definition of complement) 

⇒ y ∈A – B  (definition of set difference) 

But y is an arbitrary element of A ∩ Bc 

∴ A ∩ Bc ⊆ A – B…………. (2) 

From (1) and (2) it follows that 

 A – B = A ∩ Bc (as required) 
 



6. Prove the DeMorgan’s Law: (A ∪ B)c = Ac ∩ Bc 

Proof: 

Let x ∈(A ∪ B)c 

⇒  x ∉ A ∪ B  (definition of complement) 

 x ∉A and x ∉ B (DeMorgan’s Law of Logic) 

⇒ x ∈ Ac and x ∈ Bc (definition of complement) 

⇒ x ∈Ac ∩ Bc  (definition of intersection)  

 

But x is an arbitrary element of (A∪B)c  

∴ (A ∪ B)c ⊆ Ac ∩ Bc………(1) 
 



6. Prove the DeMorgan’s Law: (A ∪ B)c = Ac ∩ Bc (Cont.) 

Conversely, let y ∈ Ac ∩ Bc 

⇒ y ∈ Ac and y ∈ Bc (definition of intersection) 

⇒ y ∉A and y ∉ B (definition of complement) 

⇒ y ∉ A ∪ B  (DeMorgan’s Law of Logic) 

⇒ y ∈(A ∪ B)c  (definition of complement) 

But y is an arbitrary element of Ac ∩ Bc 

∴ Ac ∩ Bc ⊆ (A ∪ B)c………………(2) 

From (1) and (2) we have 

 (A ∪ B)c =  Ac ∩ Bc   

Which is the DeMorgan's Law 



7. Prove the associative law: A ∩ (B ∩ C) = (A ∩ B) ∩ C 

Proof:  

Consider x ∈A ∩ (B ∩ C) 

⇒ x ∈ A and x ∈ B ∩ C  (definition of intersection) 

⇒ x ∈ A and x ∈B and x ∈ C (definition of intersection) 

⇒ x ∈ A ∩ B and x ∈ C  (definition of intersection) 

⇒ x ∈(A ∩ B) ∩ C  (definition of intersection) 

But x is an arbitrary element of A ∩ (B ∩ C) 

∴ A ∩ (B ∩ C) ⊆ (A ∩ B) ∩ C……(1) 



7. Prove the associative law: A ∩ (B ∩ C) = (A ∩ B) ∩ C 
(Cont.) 

Conversely, let y ∈(A ∩ B) ∩ C 

⇒ y ∈ A ∩ B and y ∈C (definition of intersection) 

⇒ y ∈ A and y ∈ B and y ∈ C (definition of intersection) 

⇒ y ∈ A and y ∈ B ∩ C (definition of intersection) 

⇒ y ∈A ∩ (B ∩ C)  (definition of intersection) 

But y is an arbitrary element of (A ∩ B) ∩ C 

∴(A ∩ B) ∩ C ⊆ A ∩ (B ∩ C)……..(2) 

From (1) & (2), we conclude that 

 A ∩ (B ∩ C) = (A ∩ B) ∩ C  (proved) 
 



8. Prove that A ∩ B = A when A ⊆ B 
Proof: Let x ∈ A ∩ B 

⇒ x ∈ A and x ∈B  

⇒ x ∈ A (in particular) 

Hence A ∩ B ⊆ A…………..(1) 

Conversely, let x ∈ A 

Then x ∈ B   (since A ⊆ B) 

Now x ∈ A and x ∈ B, therefore x ∈ A ∩ B 

Hence, A ⊆ A ∩ B…………..(2) 

From (1) and (2) it follows that 

 A = A ∩ B    (proved) 



9. Prove that A ∪ B = B when A ⊆ B 
Proof: Suppose that A ⊆ B. Consider x ∈A ∪ B. 

CASE I (when x ∈A) 

 Since A ⊆ B, x ∈A ⇒ x ∈B 

CASE II (when x ∉A) 

 Since x ∈A ∪ B, we have x ∈B 

Thus x ∈B in both the cases, and we have 

 A ∪ B ⊆ B……………(1) 

Conversely, let x ∈B. Then clearly, x ∈A ∪ B 

Hence B ⊆ A ∪ B…………….(2) 

Combining (1) and (2), we deduce that 

 A ∪ B = B  (proved) 



Using Set Identities 
Prove that (A – B) ∪ (A ∩ B) = A, where A and B are subsets of U 

Proof: 

LHS = (A – B) ∪ (A ∩ B)  

= (A ∩ Bc) ∪ (A ∩ B) (Alternative representation for set difference) 

= A ∩ (Bc ∪ B)  Distributive Law 

= A ∩ U    Complement Law 

= A     Identity Law 

= RHS     (proved) 

The above equality can be easily seen by Venn diagram below 

U 

A-B 

A B 

A ∩ B 



Using Set Identities (Cont.) 

Prove that A – (A – B) = A ∩ B 

Proof:  

LHS =  A – (A – B) 

= A – (A ∩ Bc)  Alternative representation for set difference 

= A ∩ (A ∩ Bc)c Alternative representation for set difference 

= A ∩ (Ac ∪ (Bc)c)      DeMorgan’s Law 

= A ∩ (Ac ∪ B)         Double Complement Law 

= (A ∩ Ac) ∪ (A ∩ B) Distributive Law 

= ∅ ∪ (A ∩ B)  Complement Law 

= A ∩ B  Identity Law 

= RHS   (proved) 

 



Using Set Identities (Cont.) 

Prove that (A – B) – C = (A – C) – B  

Proof: 

LHS = (A – B) – C  

= (A ∩ Bc) – C  Alternative representation of set difference 

= (A ∩ Bc) ∩ Cc  Alternative representation of set difference 

= A ∩ (Bc ∩ Cc)  Associative Law 

= A ∩ (Cc ∩ Bc)  Commutative Law 

= (A ∩ Cc) ∩ Bc  Associative Law 

= (A – C) ∩ Bc  Alternative representation of set difference 

= (A – C) – B  Alternative representation of set difference 

= RHS   (proved) 
 



Using Set Identities (Cont.) 

Simplify (Bc ∪ (Bc – A))c 

Solution: 

(Bc ∪ (Bc – A))c = (Bc ∪ (Bc ∩ Ac))c Alternative representation  for 
     set difference 

  = (Bc)c ∩ (Bc ∩ Ac)c DeMorgan’s Law 

  = B ∩ ((Bc)c ∪ (Ac)c) DeMorgan’s Law 

  = B ∩ (B ∪ A)  Double Complement Law 

  = B   Absorption Law 

 



Proving Set Identities Using Membership Table 

Prove that A – (A – B) = A ∩ B 

Solution:  

 

 

 

 

 

The last two columns are same so A – (A – B) = A ∩ B 
 

 

 

 



Proving Set Identities Using Membership Table (Cont.) 

Prove that (A ∩ B)c = Ac ∪ Bc , using Membership Table 
Solution: 
 
 
 
 
 
 
 
 
Entries in the last columns are same thus (A ∩ B)c = Ac ∪ Bc 

 
 



Proving Set Identities Using Membership Table (Cont.) 

Prove that A – B = A ∩ Bc  
Solution: 
 
 
 
 
 
 
 
Entries in the 3rd and last columns are same so A – B = A ∩ Bc 
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