Lecture \# 09

Discrete Structure

Set Identities

- Let A and B be subsets of a universal set U
- Recall the following Definitions

$$
\begin{aligned}
& A \cup B=\{x \in U \mid x \in A \text { or } x \in B\} \\
& A \cap B=\{x \in U \mid x \in A \text { and } x \in B\} \\
& A-B=\{x \in U \mid x \in A \text { and } x \notin B\} \\
& A^{c}=\{x \in U \mid x \notin A\}
\end{aligned}
$$

1. Idempotent Laws
a.
$A \cup A=A$
b. $\quad A \cap A=A$
2. Commutative Laws
a. $\quad A \cup B=B \cup A$
b. $\quad A \cap B=B \cap A$
3. Associative Laws
a. $\quad A \cup(B \cup C)=(A \cup B) \cup C$
b. $\quad A \cap(B \cap C)=(A \cap B) \cap C$

Set Identities (Cont.)

4. Distributive Laws
a. $A \cup(B \cap C)=(A \cup B) \cap(A \cup B)$
b. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
5. Identity Laws
a. $\mathrm{A} \cup \varnothing=\mathrm{A}$
b. $A \cap \varnothing=\varnothing$
c. $\quad \mathrm{A} \cup \mathrm{U}=\mathrm{U}$
d. $A \cap U=A$
6. Complement Laws
a. $A \cup A^{c}=U$ b. $A \cap A^{c}=\varnothing$
c. $U^{c}=\varnothing$
d. $\varnothing^{c}=U$
7. Double Complement Law

$$
\left(A^{c}\right)^{c}=A
$$

8. DeMorgan's Laws
a. $(A \cup B)^{c}=A^{c} \cap B^{c}$
$b^{(}(A \cap B)^{c}=A^{c} \cup B^{c}$

Set Identities (Cont.)

9. Alternative Representation for Set Difference

$$
\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{~B}^{\mathrm{C}}
$$

10. Subset Laws
a. $A \cup B \subseteq C$ iff $A \subseteq C$ and $B \subseteq C$
b. $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$ iff $\mathrm{C} \subseteq \mathrm{A}$ and $\mathrm{C} \subseteq \mathrm{B}$
11. Absorption Laws

$$
\text { a. } A \cup(A \cap B)=A \quad \text { b. } A \cap(A \cup B)=A
$$

1. Prove that $A \subseteq A \cup B$

Proof:

Let A, B and C be subsets of a universal set U
Let x be an arbitrary element of A, that is $x \in A$.
$\Rightarrow \quad x \in A$ or $x \in B$
$\Rightarrow \quad x \in A \cup B$
But x is an arbitrary element of A.

$$
\therefore \quad A \subseteq A \cup B \quad \text { (proved) }
$$

2. Prove that $A-B \subseteq A$

Proof:

Let $x \in A-B$

$$
\begin{array}{lll}
\Rightarrow & x \in A \text { and } x \notin B & \text { (by definition of } A-B \text {) } \\
\Rightarrow & x \in A & \text { (in particular) }
\end{array}
$$

But x is an arbitrary element of $A-B$

$$
\therefore \quad A-B \subseteq A \quad \text { (proved) }
$$

3. Prove that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$

Proof:
Suppose that $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}$
Consider $\mathrm{x} \in \mathrm{A}$

$$
\begin{array}{lll}
\Rightarrow & x \in B & (\text { as } A \subseteq B) \\
\Rightarrow & x \in C & (\text { as } B \subseteq C)
\end{array}
$$

But x is an arbitrary element of A

$$
\therefore \quad \mathrm{A} \subseteq \mathrm{C} \quad \text { (proved) }
$$

4. Prove that $A \subseteq B$ iff $B^{c} \subseteq A^{c}$

Proof:

Suppose $A \subseteq B \quad\left\{T\right.$ prove $\left.B^{c} \subseteq A^{c}\right\}$

$$
\begin{array}{lll}
\text { Let } x \in B^{c} & \\
\Rightarrow & x \notin B & \text { (by definition of } \left.B^{c}\right) \\
\Rightarrow & x \notin A & \\
\Rightarrow & x \in A^{c} & \text { (by definition of } A^{c} \text {) }
\end{array}
$$

The contrapositive of "if $x \in A$ then $x \in B$ " is "if $x \notin B$ then $x \notin A$ "
Thus if $x \notin B$ then $x \notin A$ it means that $A \subseteq B$
But x is an arbitrary element of B^{c}

$$
\therefore \mathrm{B}^{\mathrm{c}} \subseteq \mathrm{~A}^{\mathrm{c}}
$$

4. Prove that $A \subseteq B$ iff $B^{c} \subseteq A^{c}$ (Cont.)

Conversely,
Suppose $B^{c} \subseteq A^{c}$
$\{$ To prove $\mathrm{A} \subseteq \mathrm{B}\}$
Let $x \in A$

$$
\begin{aligned}
& \left.\Rightarrow x \notin A^{c} \quad \text { (by definition of } A^{c}\right) \\
& \Rightarrow \mathrm{x} \notin \mathrm{~B}^{\mathrm{C}} \quad\left(\therefore \mathrm{~B}^{\mathrm{c}} \subseteq \mathrm{~A}^{\mathrm{c}}\right) \\
& \Rightarrow x \in B \\
& \text { (by definition of } \mathrm{BC}^{C} \text {) }
\end{aligned}
$$

But x is an arbitrary element of A
$\therefore \mathrm{A} \subseteq \mathrm{B}$
(proved)

5. Prove that $A-B=A \cap B^{C}$

Proof:

Let $x \in A-B$
$\Rightarrow \quad x \in A$ and $x \notin B \quad$ (definition of set difference)
$\Rightarrow \quad x \in A$ and $x \in B^{c} \quad$ (definition of complement)
$\Rightarrow \quad x \in A \cap B^{c} \quad$ (definition of intersection)
But x is an arbitrary element of $A-B$ so we can write
$\therefore \mathrm{A}-\mathrm{B} \subseteq \mathrm{A} \cap \mathrm{B}^{\mathrm{C}}$

5. Prove that $A-B=A \cap B^{c}$ (Cont.)

Conversely, let $\mathrm{y} \in \mathrm{A} \cap \mathrm{B}^{\mathrm{c}}$

\Rightarrow	$y \in A$ and $y \in B^{c}$	(definition of intersection)
\Rightarrow	$y \in A$ and $y \notin B$	(definition of complement)
\Rightarrow	$y \in A-B$	(definition of set difference)

But y is an arbitrary element of $\mathrm{A} \cap \mathrm{B}^{\mathrm{C}}$
$\therefore A \cap B^{c} \subseteq A-B$
From (1) and (2) it follows that

$$
A-B=A \cap B^{C} \text { (as required) }
$$

6. Prove the DeMorgan's Law: $(A \cup B)^{c}=A^{c} \cap B^{c}$

Proof:

$$
\text { Let } x \in(A \cup B)^{c}
$$

\Rightarrow	$x \notin A \cup B$	(definition of complement)
	$x \notin A$ and $x \notin B$	(DeMorgan's Law of Logic)
\Rightarrow	$x \in A^{c}$ and $x \in B^{c}$	(definition of complement)
\Rightarrow	$x \in A^{c} \cap B^{c}$	(definition of intersection)

But x is an arbitrary element of $(A \cup B)^{c}$
$\therefore(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$
6. Prove the DeMorgan's Law: $(A \cup B)^{c}=A^{c} \cap B^{c}$ (Cont.)

Conversely, let $y \in A^{c} \cap B^{c}$

\Rightarrow	$y \in A^{c}$ and $y \in B^{c}$	(definition of intersection)
\Rightarrow	$y \notin A$ and $y \notin B$	(definition of complement)
\Rightarrow	$y \notin A \cup B$	(DeMorgan's Law of Logic)
\Rightarrow	$y \in(A \cup B)^{c}$	(definition of complement)

But y is an arbitrary element of $A^{c} \cap B^{c}$
$\therefore A^{c} \cap B^{c} \subseteq(A \cup B)^{c}$
From (1) and (2) we have
$(A \cup B)^{c}=A^{c} \cap B^{c}$
Which is the DeMorgan's Law

7. Prove the associative law: $A \cap(B \cap C)=(A \cap B) \cap C$

Proof:
Consider $x \in A \cap(B \cap C)$
$\Rightarrow \quad x \in A$ and $x \in B \cap C \quad$ (definition of intersection)
$\Rightarrow \quad x \in A$ and $x \in B$ and $x \in C \quad$ (definition of intersection)
$\Rightarrow \quad x \in A \cap B$ and $x \in C \quad$ (definition of intersection)
$\Rightarrow \quad x \in(A \cap B) \cap C \quad$ (definition of intersection)
But x is an arbitrary element of $A \cap(B \cap C)$
$\therefore A \cap(B \cap C) \subseteq(A \cap B)$
7. Prove the associative law: $A \cap(B \cap C)=(A \cap B) \cap C$ (Cont.)

Conversely, let $y \in(A \cap B) \cap C$
$\Rightarrow \quad y \in A \cap B$ and $y \in C \quad$ (definition of intersection)
$\Rightarrow \quad y \in A$ and $y \in B$ and $y \in C \quad$ (definition of intersection)
$\Rightarrow \quad y \in A$ and $y \in B \cap C \quad$ (definition of intersection)
$\Rightarrow \quad y \in A \cap(B \cap C) \quad$ (definition of intersection)
But y is an arbitrary element of $(A \cap B) \cap C$
$\therefore(A \cap B) \cap C \subseteq A \cap(B \cap C) \ldots(2)$
From (1) \& (2), we conclude that

$$
A \cap(B \cap C)=(A \cap B) \cap C \quad \text { (proved) }
$$

8. Prove that $A \cap B=A$ when $A \subseteq B$

Proof: Let $x \in A \cap B$
$\Rightarrow \quad x \in A$ and $x \in B$
$\Rightarrow \quad x \in A \quad$ (in particular)
Hence $A \cap B \subseteq A$..............(1)
Conversely, let $x \in A$
Then $x \in B \quad$ (since $A \subseteq B$)
Now $x \in A$ and $x \in B$, therefore $x \in A \cap B$
Hence, $A \subseteq A \cap B$..............(2)
From (1) and (2) it follows that
$A=A \cap B$
(proved)

9. Prove that $A \cup B=B$ when $A \subseteq B$

Proof: Suppose that $A \subseteq B$. Consider $x \in A \cup B$.
CASE I (when $x \in A$)
Since $A \subseteq B, x \in A \Rightarrow x \in B$
CASE II (when $x \notin A$)
Since $x \in A \cup B$, we have $x \in B$
Thus $x \in B$ in both the cases, and we have

$$
\begin{equation*}
A \cup B \subseteq B . \tag{1}
\end{equation*}
$$

Conversely, let $x \in B$. Then clearly, $x \in A \cup B$
Hence $\mathrm{B} \subseteq \mathrm{A} \cup \mathrm{B}$
Combining (1) and (2), we deduce that

$$
A \cup B=B \quad \text { (proved) }
$$

Using Set Identities

Prove that $(A-B) \cup(A \cap B)=A$, where A and B are subsets of U

Proof:

LHS $=(A-B) \cup(A \cap B)$
$=\left(A \cap B^{c}\right) \cup(A \cap B)$ (Alternative representation for set difference)
$=A \cap\left(B^{c} \cup B\right) \quad$ Distributive Law
$=\mathrm{A} \cap \mathrm{U} \quad$ Complement Law
= A Identity Law
= RHS
(proved)
The above equality can be easily seen by Venn diagram below

Using Set Identities (Cont.)

Prove that $A-(A-B)=A \cap B$

Proof:

$L H S=A-(A-B)$
$=A-\left(A \cap B^{c}\right)$
$=A \cap\left(A \cap B^{c}\right)^{c}$
$=A \cap\left(A^{c} \cup\left(B^{c}\right)^{c}\right) \quad$ DeMorgan's Law
$=A \cap\left(A^{c} \cup B\right) \quad$ Double Complement Law
$=\left(A \cap A^{c}\right) \cup(A \cap B) \quad$ Distributive Law
$=\varnothing \cup(A \cap B) \quad$ Complement Law
$=A \cap B \quad$ Identity Law
= RHS

Alternative representation for set difference
Alternative representation for set difference
(proved)

Using Set Identities (Cont.)

Prove that $(A-B)-C=(A-C)-B$

Proof:
LHS $=(A-B)-C$
$=\left(A \cap B^{c}\right)-C \quad$ Alternative representation of set difference
$=\left(A \cap B^{c}\right) \cap C^{c} \quad$ Alternative representation of set difference
$=A \cap\left(B^{c} \cap C^{c}\right) \quad$ Associative Law
$=A \cap\left(C^{c} \cap B^{c}\right) \quad$ Commutative Law
$=\left(A \cap C^{c}\right) \cap B^{c} \quad$ Associative Law
$=(A-C) \cap B^{C} \quad$ Alternative representation of set difference
$=(A-C)-B \quad$ Alternative representation of set difference
$=$ RHS

Using Set Identities (Cont.)

Simplify $\left(B^{c} \cup\left(B^{c}-A\right)\right)^{c}$

Solution:
$\left(B^{c} \cup\left(B^{c}-A\right)\right)^{c}=\left(B^{c} \cup\left(B^{c} \cap A^{c}\right)\right)^{c}$
Alternative representation for set difference
$=\left(B^{c}\right)^{c} \cap\left(B^{c} \cap A^{c}\right)^{c} \quad$ DeMorgan's Law
$=B \cap\left(\left(B^{c}\right)^{c} \cup\left(A^{c}\right)^{c}\right) \quad$ DeMorgan's Law
$=B \cap(B \cup A) \quad$ Double Complement Law
= B
Absorption Law

Proving Set Identities Using Membership Table

Prove that $A-(A-B)=A \cap B$
Solution:

A	B	$\mathrm{A}-\mathrm{B}$	$\mathrm{A}-(\mathrm{A}-\mathrm{B})$	$\mathrm{A} \cap \mathrm{B}$
1	1	0	1	1
1	0	1	0	0
0	1	0	0	0
0	0	0	0	0

The last two columns are same so $A-(A-B)=A \cap B$

Proving Set Identities Using Membership Table (Cont.)

Prove that $(A \cap B)^{c}=A^{c} \cup B^{c}$, using Membership Table Solution:

\mathbf{A}	\mathbf{B}	$\mathbf{A} \cap \mathbf{B}$	$(\mathbf{A} \cap \mathbf{B})^{\mathbf{c}}$	$\mathbf{A}^{\mathbf{c}}$	$\mathbf{B}^{\mathbf{c}}$	$\mathbf{A}^{\mathbf{c}} \cup \mathbf{B}^{\mathbf{c}}$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

Entries in the last columns are same thus $(A \cap B)^{c}=A^{c} \cup B^{c}$

Proving Set Identities Using Membership Table (Cont.)

Prove that $A-B=A \cap B^{c}$
Solution:

A	B	$\mathrm{A}-\mathrm{B}$	B^{c}	$\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}$
1	1	0	0	0
1	0	1	1	1
0	1	0	0	0
0	0	0	1	0

Entries in the $3^{\text {rd }}$ and last columns are same so $A-B=A \cap B^{c}$

