Lecture # 09
Discrete Structure



Set Identities

 Let Aand B be subsets of a universal set U

e Recall the following Definitions
AUuB={xeU|xeAorx e B}
ANB={xeU | x e Aandx e B}
A-B={xeU|xeAandx ¢ B}
Ac={xeU | x g A}

1. Idempotent Laws

a. AUA=A b. ANA=A
2. Commutative Laws

a. AUB=BUA b. ANB=BNA
3. Associative Laws

a. Au(BuUC)=(AuB)UC

b. AN(BNC)=(AnB)NC



Set Identities (Cont.)

Distributive Laws
a. AU(BNC)=(AuB)n (AU B)
b. An(BuC)=(AnB)uU(AnC)
ldentity Laws
a. A=A b.AND=0
c. AuuUu=U dANnU=A
Complement Laws
a. AUA=U b.ANA=
c. U= d O¢=U
Double Complement Law

(Ac)c=A
DeMorgan’s Laws
a. (A UB)c=AcN B¢ b-(A N B)¢ =AU B°©



10.

11.

Set Identities (Cont.)

Alternative Representation for Set Difference
A-B=ANBe

Subset Laws

a. AUBcCCiffAcCandBcC

b. CcANnBIiffCcAandCcB

Absorption Laws

a.AU(ANB)=A b.ANn(AUB)=A



1. ProvethatAcAUB

Proof:

Let A, B and C be subsets of a universal set U
Let x be an arbitrary element of A, that is x €A.
—> XecAor xeB

—> XeAUB

But x is an arbitrary element of A.

AcCcAUB (proved)



2. ProvethatA-BcA

Proof:

Lletx €sA—B
= X €Aand x ¢B (by definition of A —B)
= X €A (in particular)

But x is an arbitrary element of A—B

A-BcCA (proved)



3. Provethatif AcBandBcC,thenAcC

Proof:
Suppose that Ac Band Bc C
Consider x €A
= X €B (as A < B)
= X €C (as B < C)
But x is an arbitrary element of A

AcC (proved)



4. Prove that A B iff B¢ c A€

Proof:
Suppose Ac B {To prove B¢ c A}
Let x B¢
= X ¢B (by definition of B¢)
= X €A
= X €A° (by definition of A°)

The contrapositive of “if x €A then x eB” is “if x g B then x ¢A”
Thus if x ¢B then x ¢A it means that Ac B
But x is an arbitrary element of B¢

. BCc A



4. Prove that A ¢ B iff Bc < A¢(Cont.)

Conversely,
Suppose B¢ c A° {To prove A c B}
Let x €A

= X ¢ A° (by definition of A°)

— x ¢ B¢ (.. BEC A°)

— x€B (by definition of B¢)

But x is an arbitrary element of A

. AcCB (proved)



5. Provethat A-B=AN B¢

Proof:

letx € A—B

= Xx€Aandx ¢ B (definition of set difference)
= x €A and x € B¢ (definition of complement)
= x € AN B¢ (definition of intersection)

But x is an arbitrary element of A — B so we can write



5. Prove that A—-B=A N B¢(Cont.)

Conversely, lety € A " B¢

= y eAandy e B¢ (definition of intersection)
= yeAandy ¢ B (definition of complement)
= yeA-B (definition of set difference)

But y is an arbitrary element of A "N B¢

“ANB‘cC A-B........ (2)

From (1) and (2) it follows that
A—B=AnNB° (asrequired)



6. Prove the DeMorgan’s Law: (A U B)¢ = AN B¢

Proof:

Let x €(A U B)°

= xg AUB (definition of complement)

XxgAandx ¢ B (DeMorgan’s Law of Logic)
= x € A®and x € B¢ (definition of complement)
= X € A® N B¢ (definition of intersection)

But x is an arbitrary element of (AUB)°¢

S (AU B) A Be......... (1)



6. Prove the DeMorgan’s Law: (A U B)¢ = A° N B¢(Cont.)

Conversely, lety € A° M B¢

= y € Aandy € B¢ (definition of intersection)
= yeAandy ¢ B (definition of complement)
= yve AUB (DeMorgan’s Law of Logic)
= y €(A U B)© (definition of complement)

But y is an arbitrary element of A® " B¢
SCACNBC S (AU B) e, (2)
From (1) and (2) we have

(AU B)¢= A° N B¢
Which is the DeMorgan's Law



7. Prove the associative law: AN(BNC)=(ANB)NC

Proof:

Considerx eAn (BN C)

= xe Aandxe BN C (definition of intersection)
= xe Aandx eBandx € C (definition of intersection)
= xe AnBandxeC (definition of intersection)
= xe(ANB)NC (definition of intersection)

But x is an arbitrary element of A ™ (B m C)

SAN(BNC)c(ANnB)NC.....(1)



7. Prove the associativelaw: AN (BN C)=(ANnB)NC
(Cont.)

Conversely, lety e(ANB)C
= ve AnBandy eC (definition of intersection)
= yve AandyeBandy € C (definition of intersection)
= ye Aandy e BN C (definition of intersection)
= y eAn (BN C) (definition of intersection)
But y is an arbitrary element of (AN B) N C
S(ANB)NCcAN (BN Q)........ (2)
From (1) & (2), we conclude that

AN(BNC)=(ANnB)NC (proved)



8. Provethat AnB=Awhen AcB

Proof: Letx e AN B

— X € Aand x €B
= x € A (in particular)
Hence ANBcCA.............. (1)

Conversely, let x € A

Thenx € B (since A < B)
Now x € A and x € B, thereforex e AN B
Hence, Ac ANB............. (2)

From (1) and (2) it follows that

A=ANB (proved)



9. Provethat AuB =B when AcB
Proof: Suppose that A — B. Consider x €A U B.
CASE | (when x €A)
SinceAcCcB,xeA=xeB
CASE Il (when x ¢A)
Since x €A U B, we have x €B

Thus x €B in both the cases, and we have

Conversely, let x €B. Then clearly, x €A U B

Hence B AU B................ (2)

Combining (1) and (2), we deduce that
AUB=B (proved)



Using Set Identities
Prove that (A—B) U (AN B)=A, where A and B are subsets of U

Proof:
LHS = (A—-B) U (A " B)

= (A M B¢) U (A n B) (Alternative representation for set difference)

= AN (B°UB) Distributive Law
=ANU Complement Law
=A ldentity Law

= RHS (proved)

The above equality can be easily seen by Venn diagram below

D °

U
A-B ANB




Using Set Identities (Cont.)

Prove that A-(A-B)=ANB

Proof:

LHS= A—(A—B)

=A—- (AN B Alternative representation for set difference
=AN (AN B9 Alternative representation for set difference
= AN (AcU (B°)9) DeMorgan’s Law

= AN (AU B) Double Complement Law

= (AN A°)U (AN B) Distributive Law

= U (AN B) Complement Law

=ANB ldentity Law

= RHS (proved)



Using Set Identities (Cont.)

Prove that(A—-B)-C=(A-C)-B

Proof:

LHS=(A-B)-C

=(ANB%)-C Alternative representation of set difference
=(AN B Ce Alternative representation of set difference
=AnN (Bc C Associative Law

= AN (Cc M BY) Commutative Law

= (AN C) B Associative Law

=(A—-C) B Alternative representation of set difference
=(A-C)—B Alternative representation of set difference

= RHS (proved)



Using Set Identities (Cont.)

Simplify (B¢ U (B¢ — A))°
Solution:

(B¢ U (B —A))¢= (B¢ U (B¢ A%))©

= (B€)c (B M A°)°
=B M ((BY)° L (A°))
=BN(BUA)

=B

Alternative representation for
set difference

DeMorgan’s Law
DeMorgan’s Law
Double Complement Law

Absorption Law



Proving Set Identities Using Membership Table

Prove that A-(A-B)=ANB

Solution:
Al B | AB | A(A-B) | AnB
1 I 0 1 1
I 0 I 0 0
0| 1 0 0 0
010 0 0

The last two columns are samesoA—(A—B)=ANB



Proving Set Identities Using Membership Table (Cont.)

Prove that (A N B)¢ = Ac U B¢, using Membership Table

Solution:

AN B

(A N B)¢

A(‘

B{'

AC v B€

0

0

0

0

0

Entries in the last columns are same thus (A N B)¢ = A® U B¢




Proving Set Identities Using Membership Table (Cont.)

Prove that A—B=A N B¢

Solution:
A B A—B B¢ A N Bf
1 1 0 0 0
1 0 1 1 1
0 1 0 0 0
0 0 0 1 0

Entries in the 3™ and last columns are same so A—B =A N B¢
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