Lecture # 09 Discrete Structure

Set Identities

- Let A and B be subsets of a universal set U
- Recall the following Definitions

 $A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$ $A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$ $A - B = \{ x \in U \mid x \in A \text{ and } x \notin B \}$ $A^{c} = \{ x \in U \mid x \notin A \}$

- 1. Idempotent Laws
 - a. $A \cup A = A$ b. $A \cap A = A$
- 2. Commutative Laws
 - a. $A \cup B = B \cup A$ b. $A \cap B = B \cap A$
- 3. Associative Laws
 - a. $A \cup (B \cup C) = (A \cup B) \cup C$
 - b. $A \cap (B \cap C) = (A \cap B) \cap C$

Set Identities (Cont.)

- 4. Distributive Laws
 - a. $A \cup (B \cap C) = (A \cup B) \cap (A \cup B)$
 - b. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 5. Identity Laws
 - a. $A \cup \emptyset = A$ b. $A \cap \emptyset = \emptyset$
 - c. $A \cup U = U$ d. $A \cap U = A$
- 6. Complement Laws
 - a. $A \cup A^c = U$ b. $A \cap A^c = \emptyset$
 - c. $U^c = \emptyset$ d. $\emptyset^c = U$
- 7. Double Complement Law $(A^c)^c = A$
- 8. DeMorgan's Laws

a. $(A \cup B)^c = A^c \cap B^c$ $b^{\cdot} (A \cap B)^c = A^c \cup B^c$

Set Identities (Cont.)

9. Alternative Representation for Set Difference

 $A - B = A \cap B^c$

- 10. Subset Laws
 - a. $A \cup B \subseteq C$ iff $A \subseteq C$ and $B \subseteq C$
 - b. $C \subseteq A \cap B$ *iff* $C \subseteq A$ and $C \subseteq B$
- 11. Absorption Laws

a. $A \cup (A \cap B) = A$ b. $A \cap (A \cup B) = A$

1. Prove that $A \subseteq A \cup B$

Proof:

Let A, B and C be subsets of a universal set U

Let x be an arbitrary element of A, that is $x \in A$.

- \Rightarrow x \in A or x \in B
- $\Rightarrow x \in A \cup B$

But x is an arbitrary element of A.

 $\therefore \quad A \subseteq A \cup B \qquad (proved)$

2. Prove that $A - B \subseteq A$

Proof:

Let $x \in A - B$

 $\Rightarrow x ∈ A and x ∉ B (by definition of A − B)$ $\Rightarrow x ∈ A (in particular)$

But x is an arbitrary element of A – B

 $\therefore \quad A - B \subseteq A \qquad (proved)$

3. Prove that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$

Proof:

Suppose that $A \subseteq B$ and $B \subseteq C$				
Consider $x \in A$				
\Rightarrow	$x \in B$	(as $A \subseteq B$)		
\Rightarrow	$x \in C$	(as $B \subseteq C$)		
But x is an arbitrary element of A				

 $\therefore \qquad A \subseteq C \qquad (proved)$

4. Prove that $A \subseteq B$ iff $B^c \subseteq A^c$

Proof:

Suppose A \subseteq B		{To prove $B^c \subseteq A^c$ }	
Let x	$\in B^c$		
\Rightarrow	x ∉B	(by definition of B ^c)	
\Rightarrow	x ∉A		
\Rightarrow	$x \in A^c$	(by definition of A ^c	

The contrapositive of "if $x \in A$ then $x \in B$ " is "if $x \notin B$ then $x \notin A$ "

Thus if $x \notin B$ then $x \notin A$ it means that $A \subseteq B$

But x is an arbitrary element of B^c

 $\therefore B^c \subseteq A^c$

4. Prove that $A \subseteq B$ iff $B^c \subseteq A^c$ (Cont.)

Conversely, Suppose $B^c \subseteq A^c$ {To prove $A \subseteq B$ } Let $x \in A$ $\Rightarrow x \notin A^c$ (by definition of A^c) $(:: B^{c} \subseteq A^{c})$

(by definition of B^c) $\Rightarrow x \in B$

But x is an arbitrary element of A

 $\Rightarrow x \notin B^c$

 $\therefore A \subseteq B$ (proved)

5. Prove that $A - B = A \cap B^c$

Proof:

Let $x \in A - B$

- $\Rightarrow x \in A \text{ and } x \notin B \qquad (definition of set difference)$
- $\Rightarrow \qquad x \in A \text{ and } x \in B^c \qquad \text{ (definition of complement)}$
- $\Rightarrow \qquad x \in A \cap B^c \qquad \qquad \text{(definition of intersection)}$

But x is an arbitrary element of A – B so we can write

 $\therefore A - B \subseteq A \cap B^{c}$(1)

5. Prove that $A - B = A \cap B^c$ (Cont.)

Conversely, let $y \in A \cap B^c$

- $\Rightarrow \qquad y \in A \text{ and } y \in B^c \qquad \text{ (definition of intersection)}$
- $\Rightarrow y \in A \text{ and } y \notin B \qquad (definition of complement)$
- $\Rightarrow \qquad y \in A B \qquad \qquad \text{(definition of set difference)}$

But y is an arbitrary element of $A \cap B^c$

 $\therefore A \cap B^{c} \subseteq A - B.....$ (2)

From (1) and (2) it follows that

 $A - B = A \cap B^c$ (as required)

6. Prove the DeMorgan's Law: $(A \cup B)^c = A^c \cap B^c$

Proof:

Let $x \in (A \cup B)^c$

 $\Rightarrow x \notin A \cup B \qquad (definition of complement)$ $x \notin A \text{ and } x \notin B \qquad (DeMorgan's Law of Logic)$ $\Rightarrow x \in A^c \text{ and } x \in B^c \qquad (definition of complement)$ $\Rightarrow x \in A^c \cap B^c \qquad (definition of intersection)$

But x is an arbitrary element of $(A \cup B)^c$

 \therefore (A \cup B)^c \subseteq A^c \cap B^c.....(1)

6. Prove the DeMorgan's Law: $(A \cup B)^c = A^c \cap B^c$ (Cont.)

Conversely, let $y \in A^c \cap B^c$

- $\Rightarrow \qquad y \in A^c \text{ and } y \in B^c \qquad \text{(definition of intersection)}$
- \Rightarrow y \notin A and y \notin B (definition of complement)
- $\Rightarrow \quad y \notin A \cup B \qquad (DeMorgan's Law of Logic)$
- $\Rightarrow \quad y \in (A \cup B)^c \qquad (definition of complement)$

But y is an arbitrary element of $A^c \cap B^c$

 $\therefore A^{c} \cap B^{c} \subseteq (A \cup B)^{c}$(2)

From (1) and (2) we have

 $(A \cup B)^c = A^c \cap B^c$

Which is the DeMorgan's Law

Prove the associative law: $A \cap (B \cap C) = (A \cap B) \cap C$ 7.

Proof:

Consider $x \in A \cap (B \cap C)$

- (definition of intersection) $x \in A$ and $x \in B \cap C$ \Rightarrow
- $x \in A$ and $x \in B$ and $x \in C$ \Rightarrow
- $x \in A \cap B$ and $x \in C$ \Rightarrow
- $x \in (A \cap B) \cap C$ \Rightarrow

- (definition of intersection)
 - (definition of intersection)
 - (definition of intersection)

But x is an arbitrary element of A \cap (B \cap C)

 \therefore A \cap (B \cap C) \subseteq (A \cap B) \cap C.....(1)

7. Prove the associative law: $A \cap (B \cap C) = (A \cap B) \cap C$ (Cont.)

Conversely, let $y \in (A \cap B) \cap C$

- $\Rightarrow \qquad y \in A \cap B \text{ and } y \in C \quad \text{(definition of intersection)}$
- $\Rightarrow \qquad y \in A \text{ and } y \in B \text{ and } y \in C \qquad (definition of intersection)$
- $\Rightarrow \qquad y \in A \text{ and } y \in B \cap C \quad \text{(definition of intersection)}$
- $\Rightarrow \quad y \in A \cap (B \cap C) \qquad (definition of intersection)$

But y is an arbitrary element of (A \cap B) \cap C

$$\therefore (A \cap B) \cap C \subseteq A \cap (B \cap C).....(2)$$

From (1) & (2), we conclude that

$$A \cap (B \cap C) = (A \cap B) \cap C \qquad (proved)$$

8. Prove that $A \cap B = A$ when $A \subseteq B$

Proof: Let $x \in A \cap B$

- $\Rightarrow \qquad x \in A \text{ and } x \in B$
- \Rightarrow x \in A (in particular)

Hence $A \cap B \subseteq A$(1)

```
Conversely, let x \in A
```

Then $x \in B$ (since $A \subseteq B$)

Now $x \in A$ and $x \in B$, therefore $x \in A \cap B$

Hence, $A \subseteq A \cap B$(2)

From (1) and (2) it follows that

 $A = A \cap B$ (proved)

9. Prove that $A \cup B = B$ when $A \subseteq B$

Proof: Suppose that $A \subseteq B$. Consider $x \in A \cup B$.

```
CASE I (when x \in A)
```

```
Since A \subseteq B, x \in A \Rightarrow x \in B
```

CASE II (when $x \notin A$)

Since $x \in A \cup B$, we have $x \in B$

Thus $x \in B$ in both the cases, and we have

 $\mathsf{A} \cup \mathsf{B} \subseteq \mathsf{B}....(1)$

Conversely, let $x \in B$. Then clearly, $x \in A \cup B$

Hence $B \subseteq A \cup B$(2)

Combining (1) and (2), we deduce that

 $A \cup B = B$ (proved)

Using Set Identities

Prove that $(A - B) \cup (A \cap B) = A$, where A and B are subsets of U Proof:

 $LHS = (A - B) \cup (A \cap B)$

= (A \cap B^c) \cup (A \cap B) (Alternative representation for set difference)

- = $A \cap (B^c \cup B)$ Distributive Law
- $= A \cap U$ Complement Law
- = A Identity Law
- = RHS (proved)

The above equality can be easily seen by Venn diagram below

Using Set Identities (Cont.)

Prove that $A - (A - B) = A \cap B$

Proof:

- LHS = A (A B)
- = A − (A ∩ B^c)
- = A ∩ (A ∩ B^c)^c
- $= \mathsf{A} \cap (\mathsf{A}^{\mathsf{c}} \cup (\mathsf{B}^{\mathsf{c}})^{\mathsf{c}})$
- $= A \cap (A^c \cup B)$

Double Complement Law

DeMorgan's Law

Complement Law

Alternative representation for set difference

Alternative representation for set difference

- = $(A \cap A^c) \cup (A \cap B)$ Distributive Law
- = $arnothing \cup$ (A \cap B)
- $= A \cap B$ Identity Law
- = RHS (proved)

Using Set Identities (Cont.)

Prove that (A - B) - C = (A - C) - B

Proof:

LHS = (A - B) - C

 $= A \cap (B^c \cap C^c)$

 $= A \cap (C^c \cap B^c)$

 $= (A \cap C^c) \cap B^c$

 $= (A - C) \cap B^{c}$

= (A - C) - B

- = $(A \cap B^c) C$ Alternative representation of set difference
- = $(A \cap B^c) \cap C^c$ Alternative representation of set difference
 - Associative Law
 - Commutative Law
 - Associative Law
 - Alternative representation of set difference
 - Alternative representation of set difference (proved)

= RHS

Using Set Identities (Cont.)

Simplify $(B^c \cup (B^c - A))^c$

Solution:

$(B^c \cup (B^c - A))^c = (B^c \cup (B^c \cap A^c))^c$	Alternative representation for set difference	
= (B ^c) ^c ∩ (B ^c ∩ A ^c) ^c	DeMorgan's Law	
= B ∩ ((B ^c) ^c ∪ (A ^c) ^c)	DeMorgan's Law	
= B ∩ (B ∪ A)	Double Complement Law	
= B	Absorption Law	

Proving Set Identities Using Membership Table

Prove that $A - (A - B) = A \cap B$

Solution:

A	В	A-B	A-(A-B)	A∩B
1	1	0	1	1
1	0	1	0	0
0	1	0	0	0
0	0	0	0	0

The last two columns are same so A – (A – B) = A \cap B

Proving Set Identities Using Membership Table (Cont.)

Prove that $(A \cap B)^c = A^c \cup B^c$, using Membership Table Solution:

A	В	$\mathbf{A} \cap \mathbf{B}$	$(\mathbf{A} \cap \mathbf{B})^{c}$	A¢	B¢	$A^{\mathfrak{c}} \cup B^{\mathfrak{c}}$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

Entries in the last columns are same thus $(A \cap B)^c = A^c \cup B^c$

Proving Set Identities Using Membership Table (Cont.)

Prove that $A - B = A \cap B^c$

Solution:

A	В	A–B	Be	$A \cap B^{c}$
1	1	0	0	0
1	0	1	1	1
0	1	0	0	0
0	0	0	1	0

Entries in the 3rd and last columns are same so A – B = A \cap B^c