Lecture # 08 Discrete Structure

Union

- Let A and B are two sets
- A and B are subsets of a universal set U
- The union of A and B is the set of all elements in U that belong to A or to B or to both
- It is denoted $A \cup B$
- $A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$
- Union is commutative: $A \cup B = B \cup A$
- $A \subseteq A \cup B$ and $B \subseteq A \cup B$

Example: Let U = {a, b, c, d, e, f, g}

$$A = \{a, c, e, g\}, B = \{d, e, f, g\}$$

Then $A \cup B = \{a, c, d, e, f, g\}$

 $A \cup B$ is shaded

Membership Table for Union

- The Membership table for the union of sets A and B is given below
- The truth table for disjunction of two statements P and Q is given below
- In the membership table of Union replace, 1 by T and 0 by F then the table is same as of disjunction
- So membership table for Union is similar to the truth table for disjunction (\v)

А	В	$A\cup B$
1	1	1
1	0	1
0	1	1
0	0	0

Р	Q	P∨Q
Т	F	Т
Т	F	Т
F	Т	Т
F	F	F

Intersection

- Let A and B are two sets
- A and B are subsets of a universal set U
- The intersection of A and B is the set of all elements in U that belong to both A and B
- It is denoted $A \cap B$
- $A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$
- Intersection is commutative: $A \cap B = B \cap A$
- $A \cap B \subseteq A$ and $A \cap B \subseteq B$
- If A and B are disjoint, then A \cap B = ϕ

Example: Let U = {a, b, c, d, e, f, g}

$$A = \{a, c, e, g\}, B = \{d, e, f, g\}$$

Then $A \cap B = \{e, g\}$

 $A \cap B$ is shaded

Membership Table For Intersection

- The Membership table for intersection of sets A and B is given below
- The truth table for conjunction of two statements P and Q is given below
- In the membership table of Intersection, replace 1 by T and 0 by F then the table is same as of conjunction
- So membership table for Intersection is similar to the truth table for conjunction (∧)

А	В	$A \cap B$
1	1	1
1	0	0
0	1	0
0	0	0

Р	Q	$P \wedge Q$
Т	F	Т
Т	F	Т
F	Т	Т
F	F	F

Difference

- Let A and B be subsets of a universal set U
- The difference of A and B is the set of all elements in U that belong to A but not to B
- It is denoted as A B
- $A B = \{x \in U \mid x \in A \text{ and } x \in B\}$
- Set difference is not commutative: $A B \neq B A$
- $A B \subseteq A$
- A B, $A \cap B$ and B A are mutually disjoint sets

Example: Let $U = \{a, b, c, d, e, f, g\}$

A =
$$\{a, c, e, g\}$$

B = $\{d, e, f, g\}$
Then A – B = $\{a, c\}$

A-B is shaded

Membership Table for Set Difference

- The Membership table for the difference of sets A and B is given below
- The truth table for negation of implication of two statements P and Q is given below
- In the membership table of difference, replace 1 by T and 0 by F then the table is same as of negation of implication
- So membership table for difference is similar to the truth table for negation of implication

А	В	A – B
1	1	0
1	0	1
0	1	0
0	0	0

Р	q	$p \rightarrow q$	\sim (p \rightarrow q).
Т	Т	Т	F
Т	F	F	Т
F	Т	Т	F
F	F	Т	F

Complement

- Let A be a subset of universal set U
- The complement of A is the set of all element in U that do not belong to A
- It is denoted by A^c
- $A^c = \{x \in U \mid x \notin A\}$
- $A^c = U A$
- $A \cap A^c = \phi$
- $A \cup A^c = U$

A^c is shaded

Example: Let $U = \{a, b, c, d, e, f, g\}$

A =
$$\{a, c, e, g\}$$

Then A^c = $\{b, d, f\}$

Membership Table for Complement

- The Membership table for the complement of sets A is given below
- The truth table for negation of statement P is given below
- In the membership table of complement, replace 1 by T and 0 by F then the table is same as of negation
- So membership table for complement is similar to the truth table for negation

А	Ac
1	0
0	1

р	~p
Т	F
F	Т

Exercise 1

Let $U = \{1, 2, 3, ..., 10\},$ $X = \{1, 2, 3, 4, 5\}$ $Y = \{y \mid y = 2 \ x, x \in X\},$ $Z = \{z \mid z^2 - 9 \ z + 14 = 0\}$

Enumerate:

(i) $X \cap Y$ (ii) $Y \cup Z$ (iii) X - Z(iv) Y^c (v) $X^c - Z^c$ (vi) $(X - Z)^c$

Solution:

Given U = {1, 2, 3, ..., 10}, X = {1, 2, 3, 4, 5}
Y = {y | y = 2 x, x
$$\in$$
 X} = {2, 4, 6, 8, 10}
Z = {z | z² - 9 z + 14 = 0} = {2, 7}

Exercise 1 (Cont.)

- (i) $X \cap Y = \{1, 2, 3, 4, 5\} \cap \{2, 4, 6, 8, 10\} = \{2, 4\}$
- (ii) $Y \cup Z = \{2, 4, 6, 8, 10\} \cup \{2, 7\} = \{2, 4, 6, 7, 8, 10\}$
- (iii) $X Z = \{1, 2, 3, 4, 5\} \{2, 7\} = \{1, 3, 4, 5\}$
- (iv) $Y^c = U Y = \{1, 2, 3, ..., 10\} \{2, 4, 6, 8, 10\}$

= {1, 3, 5, 7, 9}

(v) $X^{c} - Z^{c} = \{6, 7, 8, 9, 10\} - \{1, 3, 4, 5, 6, 8, 9, 10\} = \{7\}$

(vi) $(X - Z)^c = U - (X - Z) = \{1, 2, 3, ..., 10\} - \{1, 3, 4, 5\}$

= {2, 6, 7, 8, 9, 10}

Exercise 2

Given the following universal set U and its two subsets P and Q, where

 $U = \{x \ | \ x \in Z, \ 0 \le x \le 10\}$

 $P = \{x \mid x \text{ is a prime number}\}$

Q = {x | $x^2 < 70$ }

- (i) Draw a Venn diagram for the above
- (ii) List the elements in $P^c \cap Q$

Solution: First we write the sets in Tabular form.

 $U = \{x \ | \ x \in Z, \ 0 \le x \le 10\} = \{0, 1, 2, 3, ..., 10\}$

 $P = \{x \mid x \text{ is a prime number}\} = \{2, 3, 5, 7\}$

Q = {x | $x^2 < 70$ } = {0, 1, 2, 3, 4, 5, 6, 7, 8}

Exercise 2 (Cont.)

(i)Venn diagram

(ii)
$$P^{c} \cap Q = ?$$

 $P^{c} = U - P = \{0, 1, 2, 3, ..., 10\} - \{2, 3, 5, 7\}$
 $= \{0, 1, 4, 6, 8, 9, 10\}$
and $P^{c} \cap Q = \{0, 1, 4, 6, 8, 9, 10\} \cap \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$
 $= \{0, 1, 4, 6, 8\}$

Exercise 3

Let $U = \{1, 2, 3, 4, 5\}, C = \{1, 3\}$

and A and B are non empty sets. Find A in each of the following:

- i. $A \cup B = U, A \cap B = \phi$ and $B = \{1\}$
- ii. $A \subset B$ and $A \cup B = \{4, 5\}$
- iii. $A \cap B = \{3\}$, $A \cup B = \{2, 3, 4\}$ and $B \cup C = \{1, 2, 3\}$
- iv. A and B are disjoint, B and C are disjoint, and the union of A and B is the set {1, 2}.
- i. $A \cup B = U$, $A \cap B = \phi$ and $B = \{1\}$

Solution:

Since
$$A \cup B = U = \{1, 2, 3, 4, 5\}$$
, and $A \cap B = \phi$

Therefore $A = B^c = \{1\}^c = \{2, 3, 4, 5\}$

Exercise 3 (Cont.)

ii. $A \subset B$ and $A \cup B = \{4, 5\}$ also $C = \{1, 3\}$ Solution:

When $A \subset B$, then $A \cup B = B = \{4, 5\}$

Also A being a proper subset of B implies

A = {4} or A = {5}
iii. A
$$\cap$$
 B = {3}, A \cup B = {2, 3, 4}, B \cup C = {1,2,3},
C = {1, 3}

Solution:

 $A = \{3, 4\}$

 $B = \{2, 3\}$

 $A = \{1\}$