Lecture \# 08

Discrete Structure

Union

- Let A and B are two sets
- A and B are subsets of a universal set U
- The union of A and B is the set of all elements in U that belong to A or to B or to both
- It is denoted $A \cup B$
- $A \cup B=\{x \in U \mid x \in A$ or $x \in B\}$
- Union is commutative $: A \cup B=B \cup A$
- $A \subseteq A \cup B$ and $B \subseteq A \cup B$

Example: Let $\mathrm{U}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$

$$
A=\{a, c, e, g\}, \quad B=\{d, e, f, g\}
$$

$A \cup B$ is shaded

Then $\quad A \cup B=\{a, c, d, e, f, g\}$

Membership Table for Union

- The Membership table for the union of sets A and B is given below
- The truth table for disjunction of two statements P and Q is given below
- In the membership table of Union replace, 1 by T and 0 by F then the table is same as of disjunction
- So membership table for Union is similar to the truth table for disjunction (\vee)

A	B	$\mathrm{A} \cup \mathrm{B}$
1	1	1
1	0	1
0	1	1
0	0	0

P	Q	$P \vee Q$
T	F	T
T	F	T
F	T	T
F	F	F

Intersection

- Let A and B are two sets
- A and B are subsets of a universal set U
- The intersection of A and B is the set of all elements in U that belong to both A and B
- It is denoted $\mathrm{A} \cap \mathrm{B}$
- $A \cap B=\{x \in U \mid x \in A$ and $x \in B\}$
- Intersection is commutative: $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
- $A \cap B \subseteq A$ and $A \cap B \subseteq B$
- If A and B are disjoint, then $A \cap B=\phi$

Example: Let $\mathrm{U}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$

$$
A=\{a, c, e, g\}, \quad B=\{d, e, f, g\}
$$

Then
$A \cap B=\{e, g\}$

Membership Table For Intersection

- The Membership table for intersection of sets A and B is given below
- The truth table for conjunction of two statements P and Q is given below
- In the membership table of Intersection, replace 1 by T and 0 by F then the table is same as of conjunction
- So membership table for Intersection is similar to the truth table for conjunction (^)

A	B	$\mathrm{A} \cap \mathrm{B}$
1	1	1
1	0	0
0	1	0
0	0	0

P	Q	$P \wedge Q$
T	F	T
T	F	T
F	T	T
F	F	F

Difference

- Let A and B be subsets of a universal set U
- The difference of A and B is the set of all elements in U that belong to A but not to B
- It is denoted as $A-B$
- $A-B=\{x \in U \mid x \in A$ and $x \quad B\}$
- Set difference is not commutative: $A-B \neq B-A$
- $A-B \subseteq A$
- $A-B, A \cap B$ and $B-A$ are mutually disjoint sets

Example: Let $U=\{a, b, c, d, e, f, g\}$

$$
\begin{aligned}
& A=\{a, c, e, g\} \\
& B=\{d, e, f, g\}
\end{aligned}
$$

Then $A-B=\{a, c\}$

A-B is shaded

Membership Table for Set Difference

- The Membership table for the difference of sets A and B is given below
- The truth table for negation of implication of two statements P and Q is given below
- In the membership table of difference, replace 1 by T and 0 by F then the table is same as of negation of implication
- So membership table for difference is similar to the truth table for negation of implication

A	B	$\mathrm{A}-\mathrm{B}$
1	1	0
1	0	1
0	1	0
0	0	0

P	q	$p \rightarrow q$	$\sim(p \rightarrow q)$.
T	T	T	F
T	F	F	T
F	T	T	F
F	F	T	F

Complement

- Let A be a subset of universal set U
- The complement of A is the set of all element in U that do not belong to A
- It is denoted by A^{c}
- $A^{c}=\{x \in U \mid x \notin A\}$
- $A^{c}=U-A$
- $\mathrm{A} \cap \mathrm{A}^{\mathrm{c}}=\phi$
- $A \cup A^{c}=U$

A^{c} is shaded

Example: Let $U=\{a, b, c, d, e, f, g]$

$$
A=\{a, c, e, g\}
$$

Then $\quad A^{c}=\{b, d, f\}$

Membership Table for Complement

- The Membership table for the complement of sets A is given below
- The truth table for negation of statement P is given below
- In the membership table of complement, replace 1 by T and 0 by F then the table is same as of negation
- So membership table for complement is similar to the truth table for negation

Exercise 1

Let $\quad U=\{1,2,3, \ldots, 10\}, \quad X=\{1,2,3,4,5\}$

$$
Y=\{y \mid y=2 x, x \in X\}, \quad Z=\left\{z \mid z^{2}-9 z+14=0\right\}
$$

Enumerate:
(i) $\mathrm{X} \cap \mathrm{Y}$
(ii) $Y \cup Z$
(iii) $X-Z$
(iv) Y^{c}
(v) $X^{c}-Z^{c}$
(vi) $\quad(X-Z)^{c}$

Solution:
Given $U=\{1,2,3, \ldots, 10\}, \quad X=\{1,2,3,4,5\}$

$$
\begin{aligned}
& Y=\{y \mid y=2 x, x \in X\}=\{2,4,6,8,10\} \\
& Z=\left\{z \mid z^{2}-9 z+14=0\right\}=\{2,7\}
\end{aligned}
$$

Exercise 1 (Cont.)

(i) $\mathrm{X} \cap \mathrm{Y}=\{1,2,3,4,5\} \cap\{2,4,6,8,10\}=\{2,4\}$
(ii) $Y \cup Z=\{2,4,6,8,10\} \cup\{2,7\}=\{2,4,6,7,8,10\}$
(iii) $\mathrm{X}-\mathrm{Z}=\{1,2,3,4,5\}-\{2,7\}=\{1,3,4,5\}$
(iv) $\mathrm{Y}^{\mathrm{c}}=\mathrm{U}-\mathrm{Y}=\{1,2,3, \ldots, 10\}-\{2,4,6,8,10\}$

$$
=\{1,3,5,7,9\}
$$

(v) $X^{c}-Z^{c}=\{6,7,8,9,10\}-\{1,3,4,5,6,8,9,10\}=\{7\}$
(vi) $\quad(X-Z)^{c}=U-(X-Z)=\{1,2,3, \ldots, 10\}-\{1,3,4,5\}$

$$
=\{2,6,7,8,9,10\}
$$

Exercise 2

Given the following universal set U and its two subsets P and Q, where
$U=\{x \mid x \in Z, 0 \leq x \leq 10\}$
$P=\{x \mid x$ is a prime number $\}$
$Q=\left\{x \mid x^{2}<70\right\}$
(i) Draw a Venn diagram for the above
(ii) List the elements in $\mathrm{P}^{\mathrm{c}} \cap \mathrm{Q}$

Solution: First we write the sets in Tabular form.

$$
U=\{x \mid x \in Z, 0 \leq x \leq 10\}=\{0,1,2,3, \ldots, 10\}
$$

$$
P=\{x \mid x \text { is a prime number }\}=\{2,3,5,7\}
$$

$$
Q=\left\{x \mid x^{2}<70\right\}=\{0,1,2,3,4,5,6,7,8\}
$$

Exercise 2 (Cont.)

(i)Venn diagram

(ii) $\quad \mathrm{P}^{\mathrm{c}} \cap \mathrm{Q}=$?

$$
\begin{aligned}
P^{c}=U-P & =\{0,1,2,3, \ldots, 10\}-\{2,3,5,7\} \\
& =\{0,1,4,6,8,9,10\}
\end{aligned}
$$

and

$$
\begin{aligned}
P^{c} \cap Q & =\{0,1,4,6,8,9,10\} \cap\{0,1,2,3,4,5,6,7,8\} \\
& =\{0,1,4,6,8\}
\end{aligned}
$$

Exercise 3

Let $\quad U=\{1,2,3,4,5\}, \quad C=\{1,3\}$
and A and B are non empty sets. Find A in each of the following:
i. $A \cup B=U, A \cap B=\phi \quad$ and $B=\{1\}$
ii. $A \subset B$ and $A \cup B=\{4,5\}$
iii. $A \cap B=\{3\}, \quad A \cup B=\{2,3,4\} \quad$ and $\quad B \cup C=\{1,2,3\}$
iv. A and B are disjoint, B and C are disjoint, and the union of A and B is the set $\{1,2\}$.
i. $\quad \mathrm{A} \cup \mathrm{B}=\mathrm{U}, \quad \mathrm{A} \cap \mathrm{B}=\phi \quad$ and $\mathrm{B}=\{1\}$

Solution:

$$
\text { Since } A \cup B=U=\{1,2,3,4,5\}, \quad \text { and } A \cap B=\phi
$$

Therefore

$$
A=B^{c}=\{1\}^{c}=\{2,3,4,5\}
$$

Exercise 3 (Cont.)

ii. $A \subset B$ and $A \cup B=\{4,5\}$ also $C=\{1,3\}$

Solution:
When $A \subset B$, then $A \cup B=B=\{4,5\}$
Also A being a proper subset of B implies

$$
A=\{4\} \text { or } \quad A=\{5\}
$$

iii. $A \cap B=\{3\}$,
$A \cup B=\{2,3,4\}$,
$B \cup C=\{1,2,3\}$,
$C=\{1,3\}$
Solution:
$A=\{3,4\}$
$B=\{2,3\}$

Exercise 3 (Cont.)

(iv) $\quad A \cap B=\phi, \quad B \cap C=\phi, \quad A \cup B=\{1,2\}, \quad C=\{1,3\}$

Solution:

$$
A=\{1\}
$$

