Lecture # 07 Discrete Structure

Sets

- Set is a collection of well defined distinct objects
- Objects are called the elements or members of the set
- Sets are denoted by capital letters A, B, C ..., X, Y, Z
- Elements of a set are represented by small letters a, b, c, ..., x, y, z
- If an object x is a member of a set A then it denoted by x ∈ A, which reads "x belongs to A"
- If an object x is not a member of a set A then it denoted by x ∉A, which reads "x does not belong to A"

Tabular Form

 Listing all the elements of a set, separated by commas and enclosed within curly brackets { }

Examples:

- Set of first five Natural Numbers A = {1, 2, 3, 4, 5}
- Set of Even numbers up to 50 B = {2, 4, 6, 8, ..., 50}
- Set of positive odd numbers C = {1, 3, 5, 7, 9, ...}

The symbol "..." is called an ellipsis, short for "and so forth"

Descriptive Form

• Stating the elements of a set in words

Examples:

- A = set of first five Natural Numbers
- B = set of positive even integers less or equal to fifty
- C = set of positive odd integers

Set Builder Form

• Writing the common characteristics shared by all the elements of the set in symbolic form

Examples:

- $A = \{x \in N \mid x \le 5\}$
- $B = \{x \in E \mid 0 < x <=50\}$
- $C = \{x \in O \mid 0 < x \}$

Sets of Numbers

1. Set of Natural Numbers

 $\mathsf{N} = \{1, \, 2, \, 3, \, \dots \,\}$

2. Set of Whole Numbers

 $\mathsf{W} = \{0,\,1,\,2,\,3,\,\dots\,\}$

3. Set of Integers

$$Z = \{..., -3, -2, -1, 0, +1, +2, +3, ...\}$$

= {0, ± 1 , ± 2 , ± 3 , ...}

4. Set of Even Integers

 $\mathsf{E} = \{0, \pm 2, \pm 4, \pm 6, ...\}$

5. Set of Odd Integers

 $O = \{\pm 1, \pm 3, \pm 5, ...\}$

Sets of Numbers (Cont.)

6. Set of Prime Numbers

P = {2, 3, 5, 7, 11, 13, 17, 19, ...}

7. Set of Rational Numbers (or Quotient of Integers)

 $Q = \{x \mid x = ; p, q \in Z, q \neq 0\}$

8. Set of Irrational Numbers

Q' = { x | x is not rational} For example, $\sqrt{2}$, $\sqrt{3}$, π , e, etc.

9. Set of Real Numbers

 $R = Q \cup Q'$

10. Set of Complex Numbers

 $C = \{z \mid z = x + iy; x, y \in R\}$

Subset

- Let A and B are two sets
- Then A is called a subset of B, if, and only if, every element of A is also an element of B
- It is denoted as $A \subseteq B$
- Symbolically: $A \subseteq B \Leftrightarrow \text{if } x \in A \text{ then } x \in B$
- When $A \subseteq B$, then B is called a superset of A
- When A \subseteq B, then there exist at least one x \in A such that x \notin B
- Every set is a subset of itself

Subset (Cont.)

Examples:

Let

- $A = \{1, 3, 5\} \qquad B = \{1, 2, 3, 4, 5\}$
- $C = \{1, 2, 3, 4\}$ $D = \{3, 1, 5\}$

Then

- $A \subseteq B$ (As every element of A is in B)
- $C \subseteq B$ (As every element of C is also an element of B)
- $A \subseteq D$ (As every element of A is also an element of D and also note that every element of D is in A so $D \subseteq A$)

and $\mathsf{A} \not = \mathsf{C}$ (Because there is an element 5 of A which is not in C)

Proper Subset

- A is a proper subset of B, if, and only if, every element of A is in B but there is at least one element of B that is not in A
- It is denoted as $A \subset B$

Example:

Let A = $\{1, 3, 5\}$, B = $\{1, 2, 3, 5\}$

Then A \subset B (Because there is an element 2 of B which is not in A)

Example:

It is very easy to note that

 $\mathsf{N} \subset \mathsf{Z} \subset \mathsf{Q} \subset \mathsf{R} \subset \mathsf{C}$

Equal Sets

- Set A and B are equal if, and only if, every element of A is in B and every element of B is in A
- It is denoted as A = B
- Symbolically: A = B iff $A \subseteq B$ and $B \subseteq A$

Example:

Let A = $\{1, 2, 3, 6\}$ B = the set of positive divisors of 6 C = $\{3, 1, 6, 2\}$ D = $\{1, 2, 2, 3, 6, 6, 6\}$

Then A, B, C, and D are all equal sets.

Null Set

- A set which contains no element is called a null set, or an empty set or a void set
- It is denoted by the Greek letter Ø (phi) or { }
- \varnothing is regarded as a subset of every set

Example:

A = {x | x is a person taller than 10 feet} = \emptyset B = {x | $x^2 = 4$, x is odd} = \emptyset

Universal Set

- It is the set of all elements under consideration
- The Universal Set is usually denoted by U

Venn Diagram

- It is a graphical representation of sets by regions in the plane
- The Universal Set is represented by the interior of a rectangle
- Other sets are represented by circles lying within the rectangle

- In Venn diagram above , sets A and B intersect each other
- In Venn diagram below, set A is totally contained in set B, so $A \subseteq B$

Finite and Infinite Sets

- A finite set S contains exactly *m* distinct elements
- In such case we write |S| = m or n(S) = m
- A set is said to be infinite if it is not finite

Examples

- 1. The set S of letters of English alphabets is finite and |S| = 26
- 2. The null set \emptyset has no elements, is finite and $|\emptyset| = 0$
- 3. The set of positive integers {1, 2, 3,...} is infinite.

Membership Table

- A table displaying the membership of elements in sets
- To indicate that an element is in a set, a 1 is used
- To indicate that an element is not in a set, a 0 is used
- Membership tables can be used to prove set identities

А	Ac
1	0
0	1

- In table if an element belongs to A then it can't belongs to A^c
- Thus if there is 1 for A then 0 for A^{c in} that row of table