Lecture \# 07

Discrete Structure

Sets

- Set is a collection of well defined distinct objects
- Objects are called the elements or members of the set
- Sets are denoted by capital letters A, B, C ..., X, Y, Z
- Elements of a set are represented by small letters a, b, c, \ldots, x, y, z
- If an object x is a member of a set A then it denoted by $x \in A$, which reads " x belongs to A "
- If an object x is not a member of a set A then it denoted by $x \notin A$, which reads "x does not belong to A "

Tabular Form

- Listing all the elements of a set, separated by commas and enclosed within curly brackets \{ \}

Examples:

- Set of first five Natural Numbers $A=\{1,2,3,4,5\}$
- Set of Even numbers up to $50 \quad B=\{2,4,6,8, \ldots, 50\}$
- Set of positive odd numbers

$$
C=\{1,3,5,7,9, \ldots\}
$$

The symbol "..." is called an ellipsis, short for "and so forth"

Descriptive Form

- Stating the elements of a set in words

Examples:

- $A=$ set of first five Natural Numbers
- $B=$ set of positive even integers less or equal to fifty
- $\mathrm{C}=$ set of positive odd integers

Set Builder Form

- Writing the common characteristics shared by all the elements of the set in symbolic form

Examples:

- $A=\{x \in N \mid x<=5\}$
- $B=\{x \in E \mid 0<x<=50\}$
- $C=\{x \in O \mid 0<x\}$

Sets of Numbers

1. Set of Natural Numbers

$$
N=\{1,2,3, \ldots\}
$$

2. Set of Whole Numbers

$$
W=\{0,1,2,3, \ldots\}
$$

3. Set of Integers

$$
\begin{aligned}
Z & =\{\ldots,-3,-2,-1,0,+1,+2,+3, \ldots\} \\
& =\{0, \pm 1, \pm 2, \pm 3, \ldots\}
\end{aligned}
$$

4. Set of Even Integers
$E=\{0, \pm 2, \pm 4, \pm 6, \ldots\}$
5. Set of Odd Integers

$$
O=\{ \pm 1, \pm 3, \pm 5, \ldots\}
$$

Sets of Numbers (Cont.)

6. Set of Prime Numbers

$$
P=\{2,3,5,7,11,13,17,19, \ldots\}
$$

7. Set of Rational Numbers (or Quotient of Integers)

$$
Q=\{x \mid x=\quad ; p, q \in Z, q \neq 0\}
$$

8. Set of Irrational Numbers
$Q^{\prime}=\{x \mid x$ is not rational $\}$
For example, $\sqrt{ } 2, \sqrt{ } 3, \pi$, e, etc.
9. Set of Real Numbers
$R=Q \cup Q^{\prime}$
10. Set of Complex Numbers

$$
C=\{z \mid z=x+i y ; x, y \in R\}
$$

Subset

- Let A and B are two sets
- Then A is called a subset of B, if, and only if, every element of A is also an element of B
- It is denoted as $\mathrm{A} \subseteq \mathrm{B}$
- Symbolically: $A \subseteq B \Leftrightarrow$ if $x \in A$ then $x \in B$
- When $A \subseteq B$, then B is called a superset of A
- When $A \nsubseteq B$, then there exist at least one $x \in A$ such that $x \notin B$
- Every set is a subset of itself

Subset (Cont.)

Examples:

Let

$$
\begin{array}{ll}
A=\{1,3,5\} & B=\{1,2,3,4,5\} \\
C=\{1,2,3,4\} & D=\{3,1,5\}
\end{array}
$$

Then
$A \subseteq B($ As every element of A is in $B)$
$C \subseteq B$ (As every element of C is also an element of B)
$A \subseteq D$ (As every element of A is also an element of D and also note that every element of D is in A so $D \subseteq A$)
and $\mathrm{A} \nsubseteq \mathrm{C}$ (Because there is an element 5 of A which is not in C$)$

Proper Subset

- A is a proper subset of B, if, and only if, every element of A is in B but there is at least one element of B that is not in A
- It is denoted as $A \subset B$

Example:

Let $A=\{1,3,5\}, \quad B=\{1,2,3,5\}$
Then $A \subset B$ (Because there is an element 2 of B which is not in A)

Example:

It is very easy to note that
$\mathrm{N} \subset \mathrm{Z} \subset \mathrm{Q} \subset \mathrm{R} \subset \mathrm{C}$

Equal Sets

- Set A and B are equal if, and only if, every element of A is in B and every element of B is in A
- It is denoted as $A=B$
- Symbolically: $\mathrm{A}=\mathrm{B}$ iff $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{A}$

Example:

Let $A=\{1,2,3,6\} \quad B=$ the set of positive divisors of 6

$$
C=\{3,1,6,2\} \quad D=\{1,2,2,3,6,6,6\}
$$

Then A, B, C, and D are all equal sets.

Null Set

- A set which contains no element is called a null set, or an empty set or a void set
- It is denoted by the Greek letter $\quad \varnothing$ (phi) or $\{$ \}
- \varnothing is regarded as a subset of every set

Example:

$$
\begin{aligned}
& A=\{x \mid x \text { is a person taller than } 10 \text { feet }\}=\varnothing \\
& B=\left\{x \mid x^{2}=4, x \text { is odd }\right\}=\varnothing
\end{aligned}
$$

Universal Set

- It is the set of all elements under consideration
- The Universal Set is usually denoted by U

Venn Diagram

- It is a graphical representation of sets by regions in the plane
- The Universal Set is represented by the interior of a rectangle
- Other sets are represented by circles lying within the rectangle

- In Venn diagram above, sets A and B intersect each other
- In Venn diagram below, set A is totally contained in set B, so $A \subseteq B$

Finite and Infinite Sets

- A finite set S contains exactly m distinct elements
- In such case we write $|S|=m$ or $n(S)=m$
- A set is said to be infinite if it is not finite

Examples

1. The set S of letters of English alphabets is finite and $|S|=26$
2. The null set \varnothing has no elements, is finite and $|\varnothing|=0$
3. The set of positive integers $\{1,2,3, \ldots\}$ is infinite.

Membership Table

- A table displaying the membership of elements in sets
- To indicate that an element is in a set, a 1 is used
- To indicate that an element is not in a set, a 0 is used
- Membership tables can be used to prove set identities

- In table if an element belongs to A then it can ${ }^{\text {t }}$ belongs to A^{c}
- Thus if there is 1 for A then 0 for $A^{c \text { in }}$ that row of table

