
 
 

Lecture # 07 
Discrete Structure 



Sets 
• Set is a collection of well defined distinct objects 

• Objects are called the elements or members of the set 

• Sets are denoted by capital letters A, B, C …, X, Y, Z 

• Elements of a set are represented by small letters a, b, c, … , x, y, z 

• If an object x is a member of a set A then it denoted by x ∈A, 
which reads  “x belongs to A”  

• If an object x is not a member of a set A then it denoted by x ∉A, 
which reads “x does not belong to A” 

 



Tabular Form 
• Listing all the elements of a set, separated by commas and 

enclosed within curly brackets { } 

Examples: 

• Set of first five Natural Numbers A = {1, 2, 3, 4, 5}  

• Set of Even numbers up to 50  B = {2, 4, 6, 8, …, 50}  

• Set of positive odd numbers  C = {1, 3, 5, 7, 9, …}    

 The symbol “…” is called an ellipsis, short for “and so forth” 
 



Descriptive Form 
• Stating the elements of a set in words 

Examples:  

• A = set of first five Natural Numbers 

• B = set of positive even integers less or equal to fifty 

• C = set of positive odd integers 
 



Set Builder Form 

• Writing the common characteristics shared by all the elements of 
the set in symbolic form 

Examples: 

• A = {x ∈Ν | x<=5} 

• B = {x ∈ Ε | 0 < x <=50} 

• C = {x ∈Ο | 0 < x } 
 



Sets of Numbers 
1. Set of Natural Numbers 

 N = {1, 2, 3, … } 

2. Set of Whole Numbers 

 W = {0, 1, 2, 3, … } 

3. Set of Integers 

 Z = {…, -3, -2, -1, 0, +1, +2, +3, …} 

    = {0, ±1, ±2, ±3, …} 

4. Set of Even Integers 

 E = {0, ± 2, ± 4, ± 6, …} 

5. Set of Odd Integers  

 O = {± 1, ± 3, ± 5, …} 

 

  
 



Sets of Numbers (Cont.) 
6. Set of Prime Numbers 

 P = {2, 3, 5, 7, 11, 13, 17, 19, …} 

7. Set of Rational Numbers (or Quotient of Integers) 

 Q = {x | x =      ; p, q ∈Z, q ≠ 0} 

8. Set of Irrational Numbers 

 Q′ = { x | x is not rational} 

 For example, √2, √3, π, e, etc. 

9. Set of Real Numbers 

 R = Q ∪   Q′  

10. Set of Complex Numbers  

 C = {z | z = x + iy;  x, y ∈  R} 

 
 



Subset 

• Let A and  B are two sets 

• Then A is called a subset of B, if, and only if, every element of A is 
also an element of B 

• It is denoted as A ⊆ B 

• Symbolically: A ⊆ B ⇔ if x ∈ A then x ∈ B 

• When A ⊆ B, then B is called a superset of A 

• When A ⊆B, then there exist at least one x ∈ A such that x ∉B 

• Every set is a subset of itself 



Subset (Cont.) 
Examples: 

Let  

A = {1, 3, 5} B = {1, 2, 3, 4, 5} 

C = {1, 2, 3, 4} D = {3, 1, 5} 

Then   

A ⊆ B ( As every element of A is in B ) 

C ⊆ B  ( As every element of  C is also an element of B ) 

A ⊆ D ( As every element of  A is also an element of D and also 
note that every element of D is in A so D ⊆ A ) 

and A ⊆ C ( Because there is an element 5 of A which is not in C ) 
 
 



Proper Subset 
• A is a proper subset of B, if, and only if, every element of A is in B 

but there is at least one element of B that is not in A  

• It is denoted as A ⊂ B 

Example: 

Let A = {1, 3, 5}, B = {1, 2, 3, 5} 

Then A ⊂ B ( Because there is an element 2 of  B which is not in A) 

Example: 

It is very easy to note that   

N ⊂ Z ⊂ Q ⊂ R ⊂ C 
 



Equal Sets 
• Set A and B are equal if, and only if, every element of A is in B and 

every element of B is in A  

• It is denoted as A = B 

• Symbolically: A = B iff A ⊆ B and B ⊆ A 

Example: 

Let A = {1, 2, 3, 6} B = the set of positive divisors of 6 

      C = {3, 1, 6, 2} D = {1, 2, 2, 3, 6, 6, 6} 

Then A, B, C, and D are all equal sets.  
 



Null Set 
• A set which contains no element is called a null set, or an empty 

set or a void set  

• It is denoted by the Greek letter      ∅ (phi) or { } 

• ∅ is regarded as a subset of every set 

Example: 

 A = {x | x is a person taller than 10 feet} = ∅  

 B = {x | x2 = 4, x is odd} = ∅ 



Universal Set 
• It is the set of all elements under consideration 

• The Universal Set is usually denoted by U 
 



Venn Diagram 
• It is a graphical representation of sets by regions in the plane 

• The Universal Set is represented by the interior of a rectangle  

• Other sets are represented by circles lying within the rectangle 

 

 

 

• In Venn diagram above , sets A and B intersect each other  

• In Venn diagram below, set A is totally contained in set B, so A ⊆ B 
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Finite and Infinite Sets 

• A finite set S contains exactly m distinct elements  

• In such case we write |S| = m or n(S) = m  

• A set is said to be infinite if it is not finite 

Examples 

1. The set S of letters of English alphabets is finite and |S| = 26 

2. The null set ∅ has no elements, is finite and |∅| = 0 

3. The set of positive integers {1, 2, 3,…} is infinite. 
 



Membership Table 

• A table displaying the membership of elements in sets  

• To indicate that an element is in a set, a 1 is used 

• To indicate that an element is not in a set, a 0 is used 

• Membership tables can be used to prove set identities 

 

 

 

 

• In table if an element belongs to A then it can`t belongs to Ac  

• Thus if there is 1 for A then 0 for Ac in that row of table 
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