# Lecture # 05 Discrete Structure

## Argument

- Argument is a list of statements (premises or assumptions or hypotheses) followed by a statement (conclusion)
  - P<sub>1</sub> Premise
  - P<sub>2</sub> Premise

P<sub>n</sub> Premise

. . . . . . . .

.:. C Conclusion

Example:

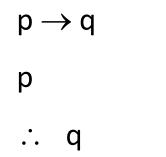
An interesting teacher keeps me awake.

I stay awake in Discrete Mathematics class.

Therefore, my Discrete Mathematics teacher is interesting.

### Valid & Invalid Argument

• Argument is **valid** if the conclusion is true when all the premises are true **or** if conjunction of its premises imply conclusion.


 $(P_1 \land P_2 \land P_3 \land \ldots \land P_n) \rightarrow C \text{ is a tautology.}$ 

 Argument is invalid if the conclusion is false when all the premises are true or if conjunction of its premises does not imply conclusion.

 $(P_1 \land P_2 \land P_3 \land \ldots \land P_n) \rightarrow C$  is a Contradiction.

- A valid argument may have:
  - true premises and a true conclusion
  - or false premises and a false conclusion
  - or false premises and a true conclusion
  - but it cannot have all true premises and yet a false conclusion
- Arguments may either valid or invalid; and statements may either true or false

**Example:** Show that the following argument form is valid.



**Solution:** In first row (critical row), both the premises are T and the conclusion is also T so the argument is valid.

| р | q | p→q | р | q |
|---|---|-----|---|---|
| Т | Т | Т   | Т | Т |
| Т | F | F   | Т | F |
| F | Т | Т   | F | Т |
| F | F | Т   | F | F |

**Example:** Show that the following argument form is invalid.

 $p \rightarrow q$ p $\therefore q$ 

**Solution**: In first and third rows (critical rows) both premises are true, but the conclusion is false in third row so argument is invalid.

| р | q | p→q | q | p |
|---|---|-----|---|---|
| Т | Т | Т   | Т | Т |
| Т | F | F   | F | Т |
| F | Т | Т   | Т | F |
| F | F | Т   | F | F |

**Example:** If Tariq is not on team A, then Hameed is on team B.

If Hameed is not on team B, then Tariq is on team A.

.:. Tariq is not on team A or Hameed is not on team B.

Solution: Let

t = Tariq is on team A

h = Hameed is on team B

Then the argument is:

 $^{\sim} t \rightarrow h$  $^{\sim} h \rightarrow t$ ∴  $^{\sim} t \lor ^{\sim} h$ 

Argument is invalid

|   | t | h | $\sim t \rightarrow h$ | $\sim h \rightarrow t$ | ~t v~h |
|---|---|---|------------------------|------------------------|--------|
|   | Т | Т | Т                      | Т                      | F      |
|   | Т | F | Т                      | Т                      | Т      |
| 1 | F | Т | Т                      | Т                      | Т      |
| 1 | F | F | F                      | F                      | Т      |

**Example:** An interesting teacher keeps me awake. I stay awake in Discrete Mathematics class. Therefore, my Discrete Mathematics teacher is interesting.

Solution: Let

t: my teacher is interesting

a: I stay awake

m: I am in Discrete Mathematics class

The argument is:

 $t \rightarrow a$ 

 $\mathsf{a} \wedge \mathsf{m}$ 

 $\therefore \quad m \wedge t$ 

Argument is invalid

| t | a | m | $t \rightarrow a$ | $a \wedge m$ | $m \wedge t$ |
|---|---|---|-------------------|--------------|--------------|
| Т | Т | Т | Т                 | Т            | Т            |
| Т | Т | F | Т                 | F            | F            |
| Т | F | Т | F                 | F            | Т            |
| Т | F | F | F                 | F            | F            |
| F | Т | Т | Т                 | Т            | F            |
| F | Т | F | Т                 | F            | F            |
| F | F | Т | Т                 | F            | F            |
| F | F | F | Т                 | F            | F            |