Lecture \# 03

Discrete Structure

Laws of Logic

Commutative Laws:

$$
\begin{aligned}
& p \wedge q \equiv q \wedge p \\
& p \vee q \equiv q \vee p
\end{aligned}
$$

Associative Laws:

$$
\begin{aligned}
& (p \wedge q) \wedge r \equiv p \wedge(q \wedge r) \\
& (p \vee q) \vee r \equiv p \vee(q \vee r)
\end{aligned}
$$

Distributive Laws:

$$
\begin{aligned}
& p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\
& p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
\end{aligned}
$$

Identity laws:

$$
\begin{aligned}
& p \wedge t \equiv p \\
& p \vee c \equiv p
\end{aligned}
$$

Negation laws:

$$
\begin{aligned}
& p \vee \sim p \equiv t \\
& p \wedge \sim p \equiv c
\end{aligned}
$$

Double negation law: $\quad \sim(\sim p) \equiv p$

Laws of Logic (Cont.)

Idempotent laws:

$$
\begin{aligned}
& p \wedge p \equiv p \\
& p \vee p \equiv p
\end{aligned}
$$

DeMorgan's laws:

$$
\begin{aligned}
& \sim(p \wedge q) \equiv \sim p \vee \sim q \\
& \sim(p \vee q) \equiv \sim p \wedge \sim q
\end{aligned}
$$

Universal bound laws:

$$
\begin{aligned}
& p \vee t \equiv t \\
& p \wedge c \equiv c
\end{aligned}
$$

Absorption laws:

$$
\begin{aligned}
& p \vee(p \wedge q) \equiv p \\
& p \wedge(p \vee q) \equiv p
\end{aligned}
$$

Negations of t and $c: \quad \sim t \equiv c$
$\sim \mathrm{C} \equiv \mathrm{t}$

Applying Laws of Logic

Using law of logic, simplify $p \vee[\sim(\sim p \wedge q)]$

Solution:

$$
\begin{array}{ll}
p \vee[\sim(\sim p \wedge q)] & \\
\equiv p \vee[\sim(\sim p) \vee(\sim q)] & \\
\text { DeMorgan's Law } \\
\equiv p \vee[p \vee(\sim q)] & \text { Double Negative Law } \\
\equiv[p \vee p] \vee(\sim q) & \text { Associative Law } \\
\equiv p \vee(\sim q) & \text { Indempotent Law }
\end{array}
$$

Which is the simplified statement form

Applying Laws of Logic (Cont.)

Using Laws of Logic, verify the logical equivalence

$$
\sim(\sim p \wedge q) \wedge(p \vee q) \equiv p
$$

SOLUTION

$$
\begin{array}{ll}
\text { Consider } \sim(\sim p \wedge q) \wedge(p \vee q) \\
\equiv & \equiv(\sim(\sim p) \vee \sim q) \wedge(p \vee q) \\
\equiv(p \vee \sim q) \wedge(p \vee q) & \\
\text { DeMorgan's Law } \\
\equiv p \vee(\sim q \wedge q) & \text { Double Negative Law } \\
\equiv p \vee c & \text { Distributive Law } \\
\equiv p & \\
\text { Negation Law } \\
\equiv p & \text { Identity Law }
\end{array}
$$

Hence the logical equivalence has been shown.

Simplifying a Statement

"You will get an A if you are hardworking and the sun shines, or you are hardworking and it rains."

Let

$$
\begin{aligned}
& p=\text { You are hardworking } \\
& q=\text { The sun shines } \\
& r=\text { It rains }
\end{aligned}
$$

Statement form for above sentence: $(p \wedge q) \vee(p \wedge r)$
Using distributive law in reverse: $(p \wedge q) \vee(p \wedge r) \equiv p \wedge(q \vee r)$
Putting $p \wedge(q \vee r)$ back into English, the sentence is rephrased as:
" You will get an A if you are hardworking and the sun shines or it rains."

Conditional Statements

- "If you earn an A in Math, then I'll buy you a computer."
- Let $\mathrm{p}=$ "You earn an A in Math."
- $\mathrm{Q}=$ "I will buy you a computer."
- if p is true, then q is true, or, more simply, if p, then q, or, p implies q, denoted by $p \rightarrow q$
- The arrow " \rightarrow " is the conditional operator
- p is the hypothesis (antecedent) and q is the conclusion (consequent)

Truth Table for $p \rightarrow q$

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Conditional Statements (Cont.)

Determine the truth value of each of the following conditional statements:

1. "If $1=1$, then $3=3$."
2. "If $1=1$, then $2=3$."
3. "If $1=0$, then $3=3$."
4. "If $1=2$, then $2=3$."
5. "If $1=1$,then $1=2$ and $2=3$."
6. "If $1=3$ or $1=2$ then $3=3$."

TRUE
FALSE
TRUE
TRUE
FALSE
TRUE

Translating English Sentences to Symbols

p = "you get an A on the final exam"
$\mathrm{q}=$ "you do every exercise in this book"
$r=$ "you get an A in this class"

- To get an A in this class it is necessary for you to get an A on the final.

$$
p \rightarrow r
$$

- You do every exercise in this book; You get an A on the final, implies, you get an A in the class.

$$
p \wedge q \rightarrow r
$$

- Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.

$$
p \wedge q \rightarrow r
$$

Translating Symbolic Propositions to English

$p=$ "you have the flu"
$\mathrm{q}=$ "you miss the final exam"
$r=$ "you pass the course"

- $p \rightarrow q$

If you have flu, then you will miss the final exam.

- $\sim_{q} \rightarrow \mathbf{r}$

If you don't miss the final exam, you will pass the course.

- ${ }^{\sim} p \wedge \sim{ }^{\sim} q \rightarrow r$

If you neither have flu nor miss the final exam, then you will pass the course.

Hierarchy of Operations for Logical Connectives

1. $\sim($ negation $)$
2. \wedge (conjunction), \vee (disjunction)
3. \rightarrow (conditional)

Example
$p \vee^{\sim} q \rightarrow \sim p$

$$
(p \vee(\sim q)) \rightarrow(\sim p)
$$

p	q	$\sim \mathrm{q}$	$\sim \mathrm{p}$	$\mathrm{p} \vee \sim \mathrm{q}$	$\mathbf{p} \vee \sim \mathbf{q} \rightarrow \sim \mathbf{p}$
T	T	F	F	T	F
T	F	T	F	T	F
F	T	F	T	F	T
F	F	T	T	T	T

Hierarchy of Operations for Logical Connectives (Cont.)

$$
(p \rightarrow q) \wedge(\sim p \rightarrow r)
$$

p	q	r	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{p}$	$\sim \mathrm{p} \rightarrow \mathrm{r}$	$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\sim \mathrm{p} \rightarrow \mathrm{r})$
T	T	T	T	F	T	T
T	T	F	T	F	T	T
T	F	T	F	F	T	F
T	F	F	F	F	T	F
F	T	T	T	T	T	T
F	T	F	T	T	F	F
F	F	T	T	T	T	T
F	F	F	T	T	F	F

Logical Equivalence Involving Implication

$$
P \rightarrow q \equiv \sim q \rightarrow{ }^{\sim} p
$$

p	q	$\sim \mathrm{q}$	$\sim \mathrm{p}$	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{q} \rightarrow \sim \mathrm{p}$
T	T	F	F	T	T
T	F	T	F	F	F
F	T	F	T	T	T
F	F	T	T	T	T

Implication Law

$$
\mathbf{P} \rightarrow \mathbf{q} \equiv \sim \mathbf{p} \vee q
$$

p	q	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{p}$	$\sim \mathrm{p} \vee \mathrm{q}$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Negation of a Conditional Statement

- Implication Law:

$$
p \rightarrow q \equiv \sim p \vee q
$$

- Taking Negation on both side:

$$
\begin{aligned}
& \sim(p \rightarrow q) \equiv \sim(\sim p \vee q) \\
& \equiv \sim(\sim p) \wedge(\sim q) \quad \text { by De Morgan's law } \\
& \equiv p \wedge \sim q \quad \text { by the Double Negative law }
\end{aligned}
$$

- Negation of "if \mathbf{p} then q " is logically equivalent to " \mathbf{p} and not q "
- Negation of implication and implication are not equivalent

Negation of a Conditional Statement (Cont.)

Statements

1. If Ali lives in Pakistan then he lives in Lahore.
2. If my car is in the repair shop, then I cannot get to class.
3. If x is prime then x is odd or x is 2 .
4. If n is divisible by 6 , then n is divisible by 2 and n is divisible by 3 .

Negations of statements

1. Ali lives in Pakistan and he does not live in Lahore.
2. My car is in the repair shop and I can get to class.
3. x is prime but x is not odd and x is not 2 .
4. n is divisible by 6 but n is not divisible by 2 or by 3 .

Inverse of a Conditional Statement

- The inverse of the conditional statement $\mathbf{p} \rightarrow \mathbf{q}$ is $\boldsymbol{\sim}_{\mathbf{p}} \rightarrow \boldsymbol{\sim}_{\mathbf{q}}$
- A conditional and its inverse are not equivalent

p	q	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\sim \mathrm{p} \rightarrow \sim \mathrm{q}$
T	T	T	F	F	T
T	F	F	F	T	T
F	T	T	T	F	F
F	F	T	T	T	T

Converse of a Conditional Statement

- The converse of the conditional statement $\mathbf{p} \rightarrow \mathbf{q}$ is $\mathbf{q} \rightarrow \mathbf{p}$
- A conditional and its converse are not equivalent
- " \rightarrow " is not a commutative operator

p	q	$\mathrm{p} \rightarrow \mathrm{q}$	$\mathrm{q} \rightarrow \mathrm{p}$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

Contrapositive of a Conditional Statement

- Contrapositive of the conditional statement $\mathbf{p} \rightarrow \mathbf{q}$ is $\sim \mathbf{q} \rightarrow \sim \mathbf{p}$
- A conditional and its contrapositive are equivalent

$$
p \rightarrow q \equiv \sim q \rightarrow \sim p
$$

p	q	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathbf{q} \rightarrow \sim \mathbf{p}$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

Converse, Inverse, \& Contrapositive

- Conditional statement: $\mathbf{p} \rightarrow \mathbf{q}$
- Inverse of the conditional statement: $\boldsymbol{\sim p}^{\mathbf{p}} \boldsymbol{\sim}^{\sim} \mathbf{q}$
- Converse of the conditional statement: $\mathbf{q} \rightarrow \mathbf{p}$
- Contrapositive of the conditional statement: $\sim_{q} \rightarrow{ }^{\sim} \mathbf{p}$
- $p \rightarrow q \equiv{ }^{\sim} q \rightarrow{ }^{\sim} p \quad \& \quad \sim p \rightarrow{ }^{\sim} q \equiv q \rightarrow p$

p	q	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\sim \mathrm{p} \rightarrow \sim \mathrm{q}$	$\mathrm{q} \rightarrow \mathrm{p}$	$\sim \mathrm{q} \rightarrow \sim \mathrm{p}$
T	T	T	F	F	T	T	T
T	F	F	F	T	T	T	F
F	T	T	T	F	F	F	T
F	F	T	T	T	T	T	T

