
 
 

Lecture # 03 
Discrete Structure 



Laws of Logic 

Commutative Laws: p ∧ q ≡ q ∧ p 
    p ∨ q ≡ q ∨ p 

Associative Laws:  (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)  

    (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) 

Distributive Laws:  p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)  

    p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 

Identity laws:  p ∧ t ≡ p 
    p ∨ c ≡ p 

Negation laws:   p ∨ ~ p ≡ t 
    p ∧ ~ p ≡ c 

Double negation law: ~ (~ p) ≡ p 

 
 



Laws of Logic (Cont.) 

Idempotent laws:  p ∧ p ≡ p  
    p ∨ p ≡ p 

DeMorgan’s laws:  ~ (p ∧ q) ≡ ~ p ∨ ~ q 
    ~ (p ∨ q) ≡ ~ p ∧ ~ q  

Universal bound laws: p ∨ t ≡ t 
    p ∧ c ≡ c 

Absorption laws:  p ∨ (p ∧ q) ≡ p  

    p ∧ (p ∨ q) ≡ p  

Negations of t and c: ~ t ≡ c  
    ~ c ≡ t 

 



Applying Laws of Logic 

Using law of logic, simplify p ∨ [~(~p ∧ q)]  
Solution: 
 p ∨ [~(~p ∧ q)]  
 ≡ p ∨ [~(~p) ∨ (~q)]  DeMorgan’s Law 
  ≡ p ∨ [p∨(~q)]   Double Negative Law 
 ≡ [p ∨ p]∨(~q)  Associative Law  
 ≡ p ∨ (~q)   Indempotent Law 
Which is the simplified statement form 
 



Applying Laws of Logic (Cont.) 

Using Laws of Logic, verify the logical equivalence  
  ~ (~ p  ∧ q) ∧ (p ∨ q) ≡ p 
SOLUTION 
 Consider ~(~p  ∧ q) ∧ (p ∨ q)  
 ≡ (~(~p) ∨ ~q) ∧(p ∨ q) DeMorgan’s Law 
 ≡ (p ∨ ~q) ∧ (p ∨ q)  Double Negative Law 
 ≡ p ∨ (~q ∧ q)   Distributive Law 
 ≡ p ∨ c   Negation Law 
 ≡ p     Identity Law 
 Hence the logical equivalence has been shown. 
 



Simplifying a Statement 
“You will get an A if you are hardworking and the sun shines, or you 
are hardworking and it rains.” 

Let  

 p = You are hardworking 

 q = The sun shines 

 r = It rains 

Statement form for above sentence: (p ∧ q) ∨ (p ∧ r)  

Using distributive law in reverse: (p ∧ q) ∨ (p ∧ r) ≡ p ∧ (q ∨ r) 

Putting p ∧ (q ∨ r) back into English, the sentence is  rephrased as: 

“ You will get an A if you are hardworking and the sun shines or it 
rains.” 
 



Conditional Statements 
• "If you earn an A in Math, then I'll buy you a computer.”  

• Let p = “You earn an A in Math.” 

• Q = “I will buy you a computer.” 

• if p is true, then q is true, or, more simply, if p, then q, or, p implies q, 
denoted by p → q 

• The arrow "→ " is the conditional operator 

• p is the hypothesis (antecedent) and q is the conclusion (consequent) 

Truth Table for p → q 

 
 



Conditional Statements (Cont.) 

Determine the truth value of each of the following 
conditional statements: 

1. “If 1 = 1, then 3 = 3.”   TRUE 

2. “If 1 = 1, then 2 = 3.”   FALSE 

3. “If 1 = 0, then 3 = 3.”    TRUE 

4. “If 1 = 2, then 2 = 3.”   TRUE 

5. “If 1 = 1,then 1 = 2 and 2 = 3.” FALSE 

6. “If 1 = 3 or 1 = 2 then 3 = 3.” TRUE 
 



Translating  English Sentences to Symbols 
p = “you get an A on the final exam” 

q = “you do every exercise in this book” 

r = “you get an A in this class” 

• To get an A in this class it is necessary for you to get an A on the 
final.  

 p → r 

• You do every exercise in this book; You get an A on the final, 
implies, you get an A in the class. 

 p ∧ q → r 

• Getting an A on the final and doing every exercise in this book is 
sufficient for getting an A in this class. 

 p ∧ q → r 

 
 



Translating Symbolic Propositions to English 
p = “you have the flu” 

q = “you miss the final exam” 

r = “you pass the course” 

• p → q 

 If you have flu, then you will miss the final exam. 

• ~q → r 

 If you don’t miss the final exam, you will pass the course. 

• ~p ∧ ~q→ r 

 If you neither have flu nor miss the final exam, then you will 
 pass the course.  

 



Hierarchy of Operations for Logical Connectives 
1. ~(negation) 
2. ∧ (conjunction), ∨ (disjunction) 
3. → (conditional) 
Example 
 p ∨ ~ q → ~ p   

 
(p ∨ (~ q)) → (~ p) 



Hierarchy of Operations for Logical Connectives (Cont.) 

(p → q)∧(~ p →r) 



Logical Equivalence Involving Implication 

P → q ≡ ~q → ~p 



Implication Law 

P → q ≡ ~p ∨ q 



Negation of a Conditional Statement 

• Implication Law: 
 p → q ≡ ~p ∨ q  
• Taking Negation on both side:  
 ~ (p → q) ≡ ~ (~ p ∨ q) 
 ≡ ~ (~ p) ∧ (~ q)    by De Morgan’s law 
 ≡  p ∧ ~ q     by the Double Negative law 

 
• Negation of “if p then q” is logically equivalent to “p and not q” 
• Negation of implication and implication are not equivalent 

 



Negation of a Conditional Statement (Cont.) 

Statements 

1. If Ali lives in Pakistan then he lives in Lahore. 

2. If my car is in the repair shop, then I cannot get to class. 

3. If x is prime then x is odd or x is 2. 

4. If n is divisible by 6, then n is divisible by 2 and n is divisible by 3. 

Negations of statements 

1.   Ali lives in Pakistan and he does not live in Lahore. 

2.   My car is in the repair shop and I can get to class. 

3. x is prime but x is not odd and x is not 2. 

4. n is divisible by 6 but n is not divisible by 2 or by 3. 
 



Inverse of a Conditional Statement 

• The inverse of the conditional statement p → q is ~p → ~q  

• A conditional and its inverse are not equivalent 
 



Converse of a Conditional Statement 

• The converse of the conditional statement p → q is q → p  

• A conditional and its converse are not equivalent 

• “→”  is not a commutative operator 
 



Contrapositive of a Conditional Statement 

• Contrapositive of the conditional statement p → q is ~ q → ~ p  

• A conditional and its contrapositive are equivalent 

 p → q ≡ ~q → ~p 
 



Converse, Inverse, & Contrapositive 

• Conditional statement: p → q 

• Inverse of the conditional statement: ~p → ~q 

• Converse of the conditional statement: q → p 

• Contrapositive of the conditional statement: ~q → ~p 

• p → q ≡ ~q → ~p  &   ~ p → ~ q ≡ q → p 
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