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Outline of This Note

Part I: Statistics Decision Theory

loss and risk
MSE and bias-variance tradeoff
Bayes risk and minimax risk

Part II: Learning Theory for Supervised Learning

optimal learner
empirical risk minimization
restricted estimators
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Statistical Inference

In statistical inference,

we collect data X1, · · · ,Xn, which follow the distribution
f (x|θ). Here θ ∈ Θ is unknown parameter of interest;

the goal of the inference is to estimate θ using the data.

Denote the estimator θ̂(X), a function of data.

Three major types of inference:

point estimator (“educated guess”)

confidence interval

hypotheses testing
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What is Statistical Decision Theory

Statistical decision theory is concerned with the problem of making
decisions, in the presence of statistical knowledge which sheds light
on the uncertainties involved in the problem.

the uncertainties are presented by θ (scalar, vector, or matrix)

Examples:

predicting the survival time of cancer patients

deciding email or spam

deciding whether the stock rate will rise or fall in a short term

Early works in decision theoy was extensively done by Wald (1950).
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Loss Function

Classical statistics is only directed towards the use of sampling
information (data only) in making inferences about θ

Decision theory combines the sampling information (data)
with a knowledge of the consequences of our decisions.

A loss function is used to quantify the consequence that would be
incurred for each possible decision for various possible values of θ.

L(θ, θ̂(X)) : Θ×Θ −→ R.

This is known as gains or utility in economics and business. In
decision theory, sometimes

θ is called the state of nature, θ̂(X) is called an action.
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Examples of Loss Functions

squared loss function: L(θ, θ̂) = (θ − θ̂)2

absolute error loss: L(θ, θ̂) = |θ − θ̂|
Lp loss: L(θ, θ̂) = |θ − θ̂|p

0-1 loss function: L(θ, θ̂) = I (θ 6= θ̂)

Kullback-Leibler loss: L(θ, θ̂) =
∫

log
(
f (x |θ)

f (x |θ̂)

)
f (x |θ)dx

In general, we use a non-negative loss

L(θ, θ̂) ≥ 0, ∀θ, θ̂.
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Risk Function

Intuitively, we prefer decision rules with small “expected (long-term
average) loss” resulting from the use of θ̂(X) repeatedly with
varying X. This leads to the risk function of a decision rule.

The risk function of an estimator θ̂ is

R(θ, θ̂) = Eθ[L(θ, θ̂)] =

∫
X
L(θ, θ̂(x))f (x|θ)dx,

where X is the sample space (the set of possible outcomes) of X .
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Bias-Variance Decomposition of MSE

For the squared loss function, the risk is known as the mean
squared error (MSE)

MSE = Eθ{[θ − θ̂(X)]2}.

We show that MSE has the following decomposition:

MSE = Eθ{[θ̂(X)− θ]2}
= Eθ{[θ̂(X)− Eθ(θ̂(X)) + Eθ(θ̂(X))− θ]2}
= Eθ{[θ̂(X)− Eθ(θ̂(X))]2}+ [Eθ(θ̂(X))− θ]2

= Varθ[θ̂(X)] + Bias2
θ[θ̂(X)].

This is known as bias-variance tradeoff.
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Risk Comparison

How do we compare two estimators?

Given θ̂1 and θ̂2, if

R(θ, θ̂1) < R(θ, θ̂2), ∀θ ∈ Θ,

we say θ̂1 is the preferred estimator.

Ideally, we would like to use the decision rule θ̂ which minimizes
the risk R(θ, θ̂) for all values of θ. However,

This problem has no solution, as it is possible to reduce the
risk at a specific θ0 to zero by making θ̂ equal to θ0 for all x.
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Example 1

Let X ∼ N(θ, 1). Consider two estimators:

θ̂1 = X

θ̂2 = 3.

Using the squared error loss, direct computation gives

R(θ, θ̂1) = Eθ(X − θ)2 = 1.

R(θ, θ̂2) = Eθ(3− θ)2 = (3− θ)2.

Which has a smaller risk? Comparison:

If 2 < θ < 4, then R(θ, θ̂2) < R(θ, θ̂1),

Otherwise, R(θ, θ̂1) < R(θ, θ̂2).

Two risk functions cross. Neither estimator uniformly dominates
the other.
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Example 2: Binomial Risk

Let X1, · · · ,Xn ∼ Bernoulli(p). Consider two estimators:

p̂1 = X̄ (Maximum Likelihood Estimator, MLE).

p̂2 =
∑n

i=1 Xi+α
α+β+n (Bayes estimator using a Beta(α, β) prior).

Using the squared error loss, direct calculation gives (Homework 1)

R(p, p̂1) =
p(1− p)

n

R(p, p̂2) = Vp(p̂2) + Bias2
p(p̂2) =

np(1− p)

(α + β + n)2
+

(
np + α

α + β + n
− p

)2

.

Let α = β =
√

n/4, we have

p̂2 =

∑n
i=1 Xi +

√
n/4

n +
√
n

, R(p, p̂2) =
n

4(n +
√
n)2

.
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Best Decision Rule

In general, there exists no uniformly best estimator which
simultaneously minimizes the risk for all values of θ. How to avoid
this difficulty?

One solution is to restrict the class of estimators by ruling out
estimators that too strongly favor specific values of θ at the
cost of neglecting other possible values.

Commonly used classes of estimators:

Unbiased rules satisfy that Eθ[θ̂(X)] = θ.
Linear decision rules
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BLUE (Best Linear Unbiased Estimator)

The data (Xi ,Yi ) follows the model

Yi =
K∑
j=1

βjXij + εi , i = 1, · · · n,

β is a vector of non-random unknown parameters, Xij are
“explanatory variables”

εi ’s are random error terms following Gaussian-Markov
assumptions: E (εi ) = 0,V (εi ) = σ2 <∞ , and uncorrelated

The class of linear estimators consists of all β̂ which is linear in Y .

Theorem: The ordinary least squares estimator (OLS)
β̂ = (X ′X )−1X ′y is best linear unbiased estimator (BLUE) of β.
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Maximum Risk and Bayes Risk

Alternatively, we can use a one-number summary of the risk
function. Two cases:

The maximum risk is

R̄(θ̂) = sup
θ∈Θ

R(θ, θ̂).

The Bayes risk is

rB(π, θ̂) =

∫
Θ
R(θ, θ̂)π(θ)dθ,

where π(θ) is a prior for θ.

These two summaries suggest two different methods for deriving
estimators: Bayes rule and minimax rule
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Maximum Binomial Risk

Let X1, · · · ,Xn ∼ Bernoulli(p). Under the squared error, we have

p̂1 = X̄ , R(p, p̂1) = p(1−p)
n .

p̂2 =
∑n

i=1 Xi+
√

n/4

n+
√
n

, R(p, p̂2) = n
4(n+

√
n)2 .

Compute the maximum risk

R̄(p̂1) = max
0≤p≤1

p(1− p)

n
=

1

4n
.

R̄(p̂2) =
n

4(n +
√
n)2

.

Based on the maximum risk, θ̂2 is better than θ̂1. However,

When n is large, R(p, p̂1) is smaller than R(p, p̂2) except for a
small region near p = 1/2. Many people prefer p̂1 to p̂2.

Considering the worst-case risk only can be conservative.
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Bayes Risk for Binomial Example

Assume the prior for θ is π(p) = 1. Then

rB(π, p̂1) =

∫ 1

0
R(p, p̂1)dp =

∫ 1

0

p(1− p)

n
dp =

1

6n
,

rB(π, p̂2) =

∫ 1

0
R(p, p̂2)dp =

n

4(n +
√
n)2

.

For n ≥ 20, rB(π, p̂2) > rB(π, p̂1), so p̂1 is better in terms of Bayes
risk.

This answer depends on the choice of prior.
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Bayes Rule

A decision rule that minimizes the Bayes risk is called a Bayes
rule. Formally,

θ̂ is a Bayes rule with respect to the prior π if

rB(π, θ̂) = inf
θ̃
rB(π, θ̃),

where the infimum is over all estimators θ̃.
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Posterior Risk

Assume that X ∼ f (x|θ) and θ ∼ π(θ). The marginal distribution
of X is

m(x) =

∫
f (x|θ)π(θ)dθ.

From Bayes theorem, the posterior density of θ given x is

π(θ|x) =
f (x|θ)π(θ)

m(x)

=
f (x|θ)π(θ)∫
f (x|θ)π(θ)dθ

For any estimator θ̂, define its posterior risk

r(θ̂|x) =

∫
L(θ, θ̂(x))π(θ|x)dθ.
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Bayes Rule Construction

Theorem: The Bayes risk rB(π, θ̂) satisfies

rB(π, θ̂) =

∫
r(θ̂|x)m(x)dx.

The posterior risk is a function only of x not a function of θ.

If we choose θ̂(x) to minimize the posterior risk, then we will
minimize the integrand at every x, and thus we minimize the
Bayes risk and obtain the Bayes estimator.
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Bayes Rule for Particular Loss Functions

Theorem:

If L(θ, θ̂) = (θ − θ̂)2, then the Bayes estimator is

θ̂(x) =

∫
θπ(θ|x)dθ = E (θ|X = x).

If L(θ, θ̂) = |θ − θ̂|, then the Bayes estimator is the median of
the posterior π(θ|x).

If L(θ, θ̂) is zero-one loss, then the Bayes estimator is the
mode of the posterior π(θ|x).
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Example: Normal

Let X1, · · · ,Xn ∼ N(µ, σ2) where σ2 is known. Suppose we use a
N(a, b) prior for µ. The Bayes estimator with respect to the
squared error loss is the posterior mean, which is

θ̂(X) =
b2

b2 + σ2/n
X̄ +

σ2/n

b2 + σ2/n
a.
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Minimax Rule

A decision rule that minimizes the maximum risk is called a
minimax rule. Formally,

θ̂ is minimax if

sup
θ∈Θ

R(θ, θ̂) = inf
θ̃

sup
θ∈Θ

R(θ, θ̃),

where the infimum is over all estimators θ̃.
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