Lab \#2

Matrices, solution of matrices and their operations using MATLAB

Objective:

Matrix:

MATLAB treats every thing as a matrix

- 1-by-1 matrices are interpreted as scalars
- Matrices with only one row or one column are known as vectors
- A matrix is a rectangular array of numbers.

Accessing Matrices:

- The matrix element located in the i -th row and j -th column of " A " is referred to as, $\mathrm{A}(\mathrm{i}, \mathrm{j})$

Example

- How to enter a matrix-

For example, the matrix A which is mathematically defined by
$A=\left[\begin{array}{lll}1 & 2 & 9 \\ 4 & 7 & 5 \\ 3 & 1 & 6\end{array}\right]$ is described in MATLAB by
$\gg A=[\underline{\text { finis row }}+\underbrace{475}_{\text {second row }} ; \underbrace{316}_{\text {thinid row }}]$ \% create a 3-by-3 square matrix which is named A

This results in a 3×3 matrix, which looks like
$\mathrm{A}=$

1	2	9
4	7	5
3	1	6

MATLAB displays matrices without braces

Building Large Matrices:

Large matrices can be assembled from smaller matrix blocks:

Size Command:

We can determine the size of a vector or matrix by using the size command.
$\gg \operatorname{size}(\mathrm{A}) \quad \%$ return the size of A
$\gg \operatorname{size}(\mathrm{A}, 1) \quad$ \% return the number of rows in A
$\gg \operatorname{size}(\mathrm{A}, 2) \quad \%$ return the number of columns in A

Individual Elements:

Individual elements of a matrix can be referenced via indices enclosed within parentheses. The first index refers to the row number, and the second index refers to the column number.

Examole

- Reference Individual Elements-
$\gg \mathrm{A}(2,1) \quad$ \% reference the second element of the first row
results in
ans $=$
4

Special Matrices:

Four Kinds of Special Matrices:

- A diagonal matrix is a matrix where only the diagonal entries are non-zero.
- An identity matrix, I, is the diagonal matrix with diagonal consisting of all 1 's.
- An upper triangular matrix is a matrix whose entries lying below the diagonal are all zero.
- A lower triangular matrix is a matrix whose entries lying above the diagonal are all zero.

A. Diagonal Matrix:

The diagonal matrix A is one whose elements off the main diagonal are all equal to zero, while those along the main diagonal are non-zero. The command diag will generate a diagonal matrix with the specified elements on the main diagonal.

Practice

-Special Matrices: The "diag" Command for Diagonal Matrix-
$\gg \mathrm{A}=\operatorname{diag}\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\right) \quad$ \% generate a diagonal matrix

B. Identity Matrix

If A is any matrix, the identity matrix for multiplication is a matrix I which satisfies the following relation. $\mathrm{AI}=\mathrm{A}$ and $\mathrm{IA}=\mathrm{A}$ This matrix, called the identity matrix, is the square matrix.

Commands for Special Matrices

MATLAB has several build-in matrices.

- The command eye(n) produces a n-by-n identity matrix.
- The zero(\mathbf{n}, \mathbf{m}) and ones(\mathbf{n}, \mathbf{m}) command will generates an n-by matrices willed with zeros, and filled with ones, respectively.
- The $\operatorname{rand}(\mathbf{n})$ command will generate an n-by-n matrix whose elements are pseudorandom numbers uniformly distributed between 0 and 1 , while rand(\mathbf{n}, \mathbf{m}) will create a n -by-m matrix with randomly generated entries distributed uniformly between 0 and 1 .
- The magic(n) command generate a n-by-n square matrix whose entries constitute a magic square; i.e., the sum of elements along each row, column, or principal diagonal is the same value.

Practice

- Commands for Special Matrices-
(1)
\gg D=eye(3) <enter> \quad \% create a 3-by-3 identity matrix
$\mathrm{D}=$
100
$0 \quad 1 \quad 0$
$0 \quad 0 \quad 1$
$\gg H=z e r o s(2,3)$ <enter> $\quad \%$ create a 2 -by- 3 null matrix
$\mathrm{H}=$
$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
\gg W=ones $(2,3)$ <enter> $\quad \%$ create a 2 -by- 3 matrix with entries equal to 1
$\mathrm{W}=$
$1 \quad 1 \quad 1$
$1 \begin{array}{lll}1 & 1\end{array}$

Matrix Operations:

Addition of Matrices Matrix addition can be accomplished only if the matrices to be added have the same dimensions for rows and columns. If A and B are two matrices of the same size, then the sum $\mathrm{A}+\mathrm{B}$ is the matrix obtained by adding the corresponding entries in A and B .

Practice

- Matrix Operations: Addition of Matrices-

```
>>A=[3 4; 5 6];
>>B=[1 2;9 7];
>C=A+B <enter>
C=
    4
    14 13
```


Difference of Matrices:

If A and B are matrices with the same size, then the difference between A and B denoted $A-B$ is the matrix defined by $\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$.

Practice

- Matrix Operations: Difference of Matrices-

```
>>A=[34;56]
% define matrix A
>>B=[1 2;9 7]; % define matrix B
>>D=A-B <enter>
    % compute the difference
D =
    2 2
    -4 -1
```


Product of Matrices:

We can perform the product $\mathrm{C}=\mathrm{A} \times \mathrm{B}$ only if the number of rows of B , the right matrix, is equal to the number of column of A , the left matrix.

Practice

-Matrix Operations: Product of Matrices

For the given matrices, obtain the product $\mathrm{C}=\mathrm{A} * \mathrm{~B}$
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right], \quad B=\left[\begin{array}{cc}-2 & 3 \\ 4 & 1\end{array}\right]$
$\gg A=[12 ; 34 ; 56] ; \quad$ \% define matrix A
$\gg B=[-23 ; 41] ; \quad$ \% define matrix B
$\gg \mathrm{C}=\mathrm{A} * \mathrm{~B}$ <enter> $\quad \%$ compute the product matrix C
$\mathrm{C}=$
65
$10 \quad 13$
$14 \quad 21$

Multiplication by a Scalar:

If A is a matrix and k is a scalar, then the product $\mathrm{k}^{*} \mathrm{~A}$ is defined to be the matrix obtained by multiplying each entry of A by the constant k .

Practice

- Matrix Operations: Multiplication by a Scalar-
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \quad B=\left[\begin{array}{ll}7 & 0 \\ 5 & 9\end{array}\right]$
$\gg A=\left[\begin{array}{lll}1 & 2 ; & 3\end{array}\right]$;
$\gg \mathrm{B}=[70 ; 59] ;$
$\gg \mathrm{C}=2 * \mathrm{~A}$
$\gg \mathrm{D}=3 * \mathrm{~A}+2 * \mathrm{~B}$
answers
$\mathrm{C}=$
24
68
$\mathrm{D}=$
$17 \quad 6$
1930
\% define matrix A
\% define matrix B
$\%$ scale A by 2
$\%$ scale A by 3, B by 2 , and add the results

Determinant of A Matrix:

Associated with any square matrix A is a scalar quantity called the determent of the matrix A. A matrix whose determinant is non-zero is called a non-singular or invertible, otherwise it is called singular.

The command det evaluates the determinant of a square matrix.

Practice

-Determinant of a Matrix-

Find the determinant of the square matrix A depicted below.
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 1 & 2\end{array}\right]$
$\gg A=\left[\begin{array}{lllllll}1 & 2 & 3 ; & 4 & 5 & 6 & 7\end{array} 112\right]$; $\quad \%$ specify matrix A
$\gg \operatorname{det}(\mathrm{A}) \quad$ \% compute the determinant
ans $=$
-21

Rank of A Matrix:

The rank of a matrix, A, equals the number of linearly independent rows or columns. The rank can be determined by finding the highest-order square sub-matrix that is non-singular. The command rank provides the rank of a given matrix.

Practice

- Rank of a Matrix-
$\gg \mathrm{A}=\left[\begin{array}{lllll}1 & 2 & 3 ; & 4 & 5 \\ 6 & 7 & 7 & 8 & 9\end{array}\right] ; \quad \%$ define matrix A
$\gg \operatorname{rank}(\mathrm{A}) \quad$ \% determine the rank of matrix A

Inverse of A Matrix:

If A and B are square matrices such that $A B=B A=I$, then matrix B is called the inverse of A and we usually write it as $1 \mathrm{~B} \mathrm{~A}^{-}=$. Only a square matrix whose determinant is not zero has an inverse. Such a matrix is called nonsingul

Practice

-Inverse of Matrix: The "inv" Command-

Find the inverse of the matrix A given by

Transpose of A Matrix:

The transpose of a matrix is the result of interchanging rows and columns. The transpose is found by using the prime operator (apostrophe), [']. In particular, the transpose of a row vector is equal to a column vector and vice versa.

Practice

- Transpose of a Matrix-

Find the transpose of the matrix A

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 2
\end{array}\right]
$$

$$
\mathrm{B}=
$$

1	4	7
2	5	8
3	6	2

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 2
\end{array}\right]
\end{aligned}
$$

$\gg B=i n v(A)$ <enter>
$\mathrm{B}=$

Trace of a Matrix:

The trace of a square matrix is equal to the sum of its diagonal elements. The trace command provides the trace of a given matrix.

Practice

- Trance of a Matrix: The "trace" Command-
$\gg \%$ compute the trace of matrix
$\left.\begin{array}{ll}\gg A=\left[\begin{array}{llllll}1 & 2 & 3 ; & 4 & 5 & 6 ;\end{array} 78\right. & 2\end{array}\right] ; \quad \begin{aligned} & \text { \% define matrix A } \\ & \gg \text { trace(A) }\end{aligned}$ <enter> $\quad \%$ calculate the trace of matrix A
ans =
8

Solving Systems Of Linear Equations:

To solve the linear system $\mathrm{Ax}=\mathrm{b}$, where A is known n -by- n matrix, b is known column vector of length n , and x is an unknown column vector of length n .
$\mathrm{Ax}=\mathrm{b}$
Multiply each side by the inverse matrix A^{-1}
$\therefore A^{-1} A x=A^{-1} b$
but $A^{-1} A=I \Rightarrow I x=A^{-1} b$
$\therefore x=A^{-1} b$

Example:

A system of 3 linear equations with 3 unknowns ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$):

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+x_{3}=10 \\
& -x_{1}+3 x_{2}+2 x_{3}=5 \\
& x_{1}-x_{2}-x_{3}=-1
\end{aligned}
$$

Let:

$$
A=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-1 & 3 & 2 \\
1 & -1 & -1
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad b=\left[\begin{array}{c}
10 \\
5 \\
-1
\end{array}\right]
$$

$$
\mathrm{Ax}=\mathrm{b}
$$

Solution by left division in MATLAB:

$$
\begin{aligned}
& \gg \mathrm{A}=\left[\begin{array}{lll}
3 & 2-1 ;-1 & 3
\end{array} 2 ; 1-1-1\right] ; \\
& \gg \mathrm{B}=[10 ; 5 ;-1] \\
& \gg x=\mathrm{A} \mid \mathrm{B} \\
& x= \\
& -2.0000 \\
& 5.0000 \\
& -6.0000
\end{aligned}
$$

Solution by Matrix Inverse in MATLAB:

$$
\begin{aligned}
& \gg A=\left[\begin{array}{lll}
3 & 2-1 ;-1 & 3 \\
2 ; & 1-1-1
\end{array}\right] \\
& \gg B=[10 ; 5 ;-1] \\
& \gg x=\operatorname{inv}(A) * B \\
& x= \\
& -2.0000 \\
& 5.0000 \\
& -6.0000
\end{aligned}
$$

Post Lab Questions

1. Which is the operator by which element to element multiplication can be done using MATLAB?
\qquad
2. $\underline{A(i, j), ~ W h a t ~ d o e s ~ i ~ a n d ~} \mathrm{j}$ represent?
\qquad
\qquad
3. What do the following basic Matrix functions represent

det	
rank	
ones	
rand	

Lab Tasks

Task 1

a) Generate a vector of 50 elements having random values between 0 and 50 .
b) What do the following commands generate:

- m=magic(4)
- sum(m)
- $\operatorname{diag}(m)$
- trace(m)
- ones(3),ones $(3,2)$
- zeros(3),zeros(3,2)

Task 2

$\mathrm{A}=$									
1	2	3	1	1	1	1	2	1	2
4	5	6	2	2	2				
7	8	9	3	3	3				

a) Practice the following Matrix operations on the given Matrices A, B and C :

- $\mathrm{A}+\mathrm{B}$
- A^{\prime}
- $\mathrm{A}^{*} \mathrm{~B}$
- $2 * \mathrm{~A}$
- $\mathrm{A} / 2$
- C. \wedge^{2}
b) Find the size of Matrix C and also generate an identity Matrix.

Task 3
Solve the following system of linear equation.
$\left\{\begin{array}{l}x+5 y+7 z=1 \\ 3 x+2 y+4 z=2 \\ 7 x+9 y+z=3\end{array}\right.$

