Lab #2

Matrices, solution of matrices and their operations using MATLAB

Objective:

Matrix:

MATLAB treats every thing as a matrix

- 1-by-1 matrices are interpreted as scalars
- Matrices with only one row or one column are known as vectors
- A matrix is a rectangular array of numbers.

Accessing Matrices:

• The matrix element located in the i-th row and j-th column of "A" is referred to as, A(i,j)

Example
- How to enter a matrix-For example, the matrix A which is mathematically defined by
$$A = \begin{bmatrix} 1 & 2 & 9 \\ 4 & 7 & 5 \\ 3 & 1 & 6 \end{bmatrix}$$
 is described in MATLAB by $\gg A = \begin{bmatrix} 1 & 2 & 9 \\ \frac{1}{from row}; & \frac{475}{second row}; & \frac{316}{third row} \end{bmatrix}$ % create a 3-by-3 square matrix which is named AThis results in a 3x3 matrix, which looks like $A = \begin{bmatrix} 1 & 2 & 9 \\ 4 & 7 & 5 \\ 3 & 1 & 6 \end{bmatrix}$ MATLAB displays matrices without braces

Building Large Matrices:

Large matrices can be assembled from smaller matrix blocks:

<u>Example</u> - Adding a row to an existing matrix-							
>>A=[1	2 9; 4	7 5; 3	316];				
>>B=[A	; 11 12	2 13]		% add one row to matrix A			
B =							
	1	2	9				
	4	7	5				
	3	1	6				
1	1	12	13				
>>C=[A;	>>C=[A; A; A]						
C =							
1	2	9					
4	7	5					
3	1	6					
1	2	9					
4	7	5					
3	1	6					
1	2	9					
4	7	5					
3	1	6					

Size Command:

We can determine the size of a vector or matrix by using the size command.

>>size(A)	% return the size of A
>>size(A,1)	% return the number of rows in A
>>size(A,2)	% return the number of columns in A

Individual Elements:

Individual elements of a matrix can be referenced via indices enclosed within parentheses. The first index refers to the row number, and the second index refers to the column number.

	<u>Example</u> - Reference Individual Elements-
>>A(2,1)	% reference the second element of the first row
results in	
ans = 4	

Special Matrices:

Four Kinds of Special Matrices:

- A diagonal matrix is a matrix where only the diagonal entries are non-zero.
- An identity matrix, I, is the diagonal matrix with diagonal consisting of all 1's.
- An upper triangular matrix is a matrix whose entries lying below the diagonal are all zero.
- A lower triangular matrix is a matrix whose entries lying above the diagonal are all zero.

A. Diagonal Matrix:

The diagonal matrix A is one whose elements off the main diagonal are all equal to zero, while those along the main diagonal are non-zero. The command diag will generate a diagonal matrix with the specified elements on the main diagonal.

B. Identity Matrix

If A is any matrix, the identity matrix for multiplication is a matrix I which satisfies the following relation. AI = A and IA = A This matrix, called the identity matrix, is the square matrix.

Commands for Special Matrices

MATLAB has several build-in matrices.

- The command **eye**(**n**) produces a n-by-n identity matrix.
- The **zero(n,m)** and **ones(n,m)** command will generates an n-by m matrices willed with zeros, and filled with ones, respectively.
- The **rand**(**n**) command will generate an n-by-n matrix whose elements are pseudorandom numbers uniformly distributed between 0 and 1, while **rand**(**n**,**m**) will create a n-by-m matrix with randomly generated entries distributed uniformly between 0 and 1.
- The **magic**(**n**) command generate a n-by-n square matrix whose entries constitute a magic square; i.e., the sum of elements along each row, column, or principal diagonal is the same value.

Practice							
- Commands for Special Matrices-							
		(1)					
>>D=eye(3) <e< td=""><td>enter></td><td>% create a 3-by-3 identity matrix</td></e<>	enter>	% create a 3-by-3 identity matrix					
D =							
1 0	0						
0 1	0						
0 0	1						
>>H=zeros(2,3)	<enter></enter>	% create a 2-by-3 null matrix					
H =							
0 0	0						
0 0	0						
>>W=ones(2,3)	<enter></enter>	% create a 2-by-3 matrix with entries equal to 1					
W =							
1 1	1						
1 1	1						

Matrix Operations:

Addition of Matrices Matrix addition can be accomplished only if the matrices to be added have the same dimensions for rows and columns. If A and B are two matrices of the same size, then the sum A+B is the matrix obtained by adding the corresponding entries in A and B.

Difference of Matrices:

If A and B are matrices with the same size, then the difference between A and B denoted A-B is the matrix defined by A-B=A+(-B).

<u>Practice</u> - Matrix Operations: Difference of Matrices-						
>>A=[3 4; 5 6]; >>B=[1 2; 9 7]; >>D=A-B <enter></enter>	% define matrix A % define matrix B % compute the difference					
D = 2 2 -4 -1						

Product of Matrices:

We can perform the product C=A x B only if the number of rows of B, the right matrix, is equal to the number of column of A, the left matrix.

Multiplication by a Scalar:

If A is a matrix and k is a scalar, then the product k^* A is defined to be the matrix obtained by multiplying each entry of A by the constant k.

<u>Practice</u> - Matrix Operations: Multiplication by a Scalar-						
$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 7 & 0 \\ 5 & 9 \end{bmatrix}$]					
>>A=[1 2; 3 4];	% define matrix A					
>>B=[7 0; 5 9];	% define matrix B					
>>C=2*A	% scale A by 2					
>>D=3*A+2*B	% scale A by 3, B by 2, and add the results					
answers						
C =						
2 4						
6 8						
D =						
17 6						
19 30						

Determinant of A Matrix:

Associated with any square matrix A is a scalar quantity called the determent of the matrix A. A matrix whose determinant is non-zero is called a non-singular or invertible, otherwise it is called singular.

The command **det** evaluates the determinant of a square matrix.

Rank of A Matrix:

The rank of a matrix, A, equals the number of linearly independent rows or columns. The rank can be determined by finding the highest-order square sub-matrix that is non-singular. The command rank provides the rank of a given matrix.

<u>Practice</u> - Rank of a Matrix-					
>>A=[1 2 3; 4 5 6; 7 8 9];	% define matrix A				
>>rank(A)	% determine the rank of matrix A				

Inverse of A Matrix:

If A and B are square matrices such that AB=BA=I, then matrix B is called the inverse of A and we usually write it as $1 B A^- =$. Only a square matrix whose determinant is not zero has an inverse. Such a matrix is called nonsingul

<u>Practice</u> -Inverse of Matrix: The "inv" Command-							
Find the inverse of the matrix A given by							
$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 2 \end{bmatrix}$							
>>A=[1 2 3; 4 5 6; 7 8 2];	% define matrix A						
>>B=inv(A) <enter></enter>	% compute the inverse of A store result in B						
B =							
-1.8095 0.9524 -0.1429							
1.6190 -0.9048 0.2857							
-0.1429 0.2857 -0.1429							

Transpose of A Matrix:

The transpose of a matrix is the result of interchanging rows and columns. The transpose is found by using the prime operator (apostrophe), [']. In particular, the transpose of a row vector is equal to a column vector and vice versa.

<u>Practice</u> - Transpose of a Matrix-						
Find the transpose of the	matrix A					
$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 2 \end{bmatrix}$						
>>A=[1 2 3; 4 5 6; 7 8 2]	% specify matrix A					
>>B=A' <enter></enter>	% compute the transpose of A and store result in B					
B =						
1 4 7						
2 5 8						
3 6 2						

Trace of a Matrix:

The trace of a square matrix is equal to the sum of its diagonal elements. The trace command provides the trace of a given matrix.

Solving Systems Of Linear Equations:

To solve the linear system Ax=b, where A is known n-by-n matrix, b is known column vector of length n, and x is an unknown column vector of length n.

Ax=b Multiply each side by the inverse matrix A^{-1} $\therefore A^{-1}Ax = A^{-1}b$ but $A^{-1}A = I \implies Ix = A^{-1}b$ $\therefore x = A^{-1}b$

Example:

A system of 3 linear equations with 3 unknowns (x1, x2, x3):

```
3x_{1}+2x_{2}+x_{3} = 10
-x<sub>1</sub> + 3x<sub>2</sub> + 2x<sub>3</sub> = 5
x_{1}-x_{2}-x_{3} = -1
Let:
A = \begin{bmatrix} 3 & 2 & 1 \\ -1 & 3 & 2 \\ 1 & -1 & -1 \end{bmatrix} \qquad x = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \qquad b = \begin{bmatrix} 10 \\ 5 \\ -1 \end{bmatrix}
```

Ax = b

Solution by left division in MATLAB:

>> A = [3 2 -1; -1 3 2; 1 -1 -1]; >> B = [10; 5; -1]; >> x = A\B x= -2.0000 5.0000 -6.0000

Solution by Matrix Inverse in MATLAB:

>> A = [3 2 -1; -1 3 2; 1 -1 -1]; >> B = [10; 5; -1]; >> x = inv (A)*B x= -2.0000 5.0000 -6.0000

Post Lab Questions

1. <u>Which is the operator by which element to element multiplication can be done</u> <u>using MATLAB?</u>

2. <u>A(i,j), What does i and j represent?</u>

3. <u>What do the following basic Matrix functions represent</u>

det	
rank	
ones	
rand	

Lab Tasks

<u>Task 1</u>

a) Generate a vector of 50 elements having random values between 0 and 50.

b) What do the following commands generate:

- \circ m=magic(4)
- o sum(m)
- \circ diag(m)
- o trace(m)
- \circ ones(3),ones(3,2)
- \circ zeros(3), zeros(3,2)

A =			E	3 =			С	=			
1	2	3		1	1	1		1	2	1	2
4	5	6		2	2	2					
7	8	9		3	3	3					

a) Practice the following Matrix operations on the given Matrices A, B and C:

- A+B
- A'
- A*B
- 2*A
- A/2
- C.^2

b) Find the size of Matrix C and also generate an identity Matrix.

Task 3

Solve the following system of linear equation.

 $\begin{cases} x + 5y + 7z = 1\\ 3x + 2y + 4z = 2\\ 7x + 9y + z = 3 \end{cases}$

