Lab \#2

Matrices, solution of matrices and their operations using MATLAB

Objective:

Matrix:

MATLAB treats every thing as a matrix

- 1-by-1 matrices are interpreted as scalars
- Matrices with only one row or one column are known as vectors
- A matrix is a rectangular array of numbers.

Example:

```
>> f=[ 1 2 3;4 5 6]
f=
123
45
>> h=[[2 4 6;1 3 5]
h=
246
135
```


Accessing Matrices:

- The matrix element located in the i -th row and j -th column of " A " is referred to as, $\mathrm{A}(\mathrm{i}, \mathrm{j})$

Some useful commands:

a) Magic Function

It generates a matrix whose elements are such that the sum of all elements in its rows, columns and diagonal elements are same. You can generate a matrix by entering
>> m=magic(4)

b) Sum Function

You can verify the above magic square by entering
>>sum(m)
For rows take the transpose and then take the sum
>>sum(m')

c) Diag

You can get the diagonal elements of a matrix by entering
>> d=diag(m)
>>sum(d)

d) Matrix Addressing:

-- matrixname(row, column)
-- colon may be used in place of a row or column reference to select the entire row or column.

Example:

$\gg f(2,3)$
ans =
6
>>h(:,1)
ans $=$
2
1
Where

$\mathrm{f}=$		
1		
4	2	3
	5	6

$\mathrm{h}=$		
2	4	6
1	3	5

More Useful Commands

zeros(n)
zeros(m,n)
ones(n)
returns a n x n matrix of zeros
returns a $\mathrm{m} \times \mathrm{n}$ matrix of zeros
returns a $\mathrm{n} \times \mathrm{n}$ matrix of ones

ones(m,n)	returns a m x n matrix of ones
rand(n)	returns a nx n matrix of random number
$\operatorname{rand}(\mathbf{m}, \mathbf{n})$	returns a m x n matrix of random number
size (A)	for a m x n matrix, returns the row vector [m, n] containing the number of rows and columns.
length(A)	returns the larger of the number of rows or columns in A .
Transpose	$\mathrm{B}=\mathrm{A}^{\prime}$
Identity Matrix	eye(n$) \rightarrow$ returns an $\mathrm{n} \times \mathrm{n}$ identity matrix
	eye $(m, n) \rightarrow$ returns an $m \times n$ matrix with ones on the main diagonal and zeros elsewhere.
Addition	$\mathrm{C}=\mathrm{A}+\mathrm{B}$
Subtraction	$\mathrm{C}=\mathrm{A}-\mathrm{B}$
Scalar Multiplication	$\mathrm{B}=\alpha \mathrm{A}$, where α is a scalar.
Matrix Multiplication	$\mathrm{C}=\mathrm{A} . * \mathrm{~B}$
Matrix Inverse	$B=\operatorname{inv}(\mathrm{A}), \mathrm{A}$ must be a square matrix in this case.
Matrix Powers	$\mathrm{B}=\mathrm{A} . \wedge^{2} \rightarrow$ squares each element in the matrix
$\mathbf{C}=\mathbf{A} * \mathbf{A} \rightarrow \quad$ computes $\mathrm{A}^{*} \mathrm{~A}$, and A must be a square matrix.	
Determinant det (A), and A must be a square matrix.	
Note: A, B, C are mat	and m, n, α are scalars.

Array Operations:

a) Scalar-Array Mathematics

- For addition, subtraction, multiplication, and division of an array by a scalar simply apply the operations to all elements of the array.

Example:
$\gg \mathrm{f}=\left[\begin{array}{lll}1 & 2 ; & 3\end{array}\right]$
$\mathrm{f}=$
12
34
$\gg \mathrm{g}=2 * \mathrm{f}-1 / /$ Each element in the array f is multiplied by 2 , then subtracted by 1.
$\mathrm{g}=$
13
57

Element-by-Element Array-Array Mathematics

Operation	Algebraic Form	MATLAB
Addition	$\mathrm{a}+\mathrm{b}$	$\mathrm{a}+\mathrm{b}$
Subtraction	$\mathrm{a}-\mathrm{b}$	$\mathrm{a}-\mathrm{b}$
Multiplication	$\mathrm{a} \times \mathrm{b}$	$\mathrm{a} .^{*} \mathrm{~b}$
Division	$\mathrm{a} \div \mathrm{b}$	$\mathrm{a} . / \mathrm{b}$
Exponentiation	ab	$\mathrm{a} .^{\wedge} \mathrm{b}$

Example:

$$
\begin{aligned}
& \gg \mathrm{x}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \gg \mathrm{y}=\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right] \\
& \gg \mathrm{z}=\mathrm{x} . * \mathrm{y} / / \text { Each element in } \mathrm{x} \text { is multiplied by the corresponding element in } \mathrm{y} . \\
& \mathrm{z}=41018
\end{aligned}
$$

b) Solutions to Systems of Linear Equations

Example:
A system of 3 linear equations with 3 unknowns (x1, x2, x3):

$$
\begin{aligned}
& 3 \mathrm{x} 1+2 \mathrm{x} 2-\mathrm{x} 3=10 \\
& -\mathrm{x} 1+3 \mathrm{x} 2+2 \mathrm{x} 3=5 \\
& \mathrm{x} 1-\mathrm{x} 2-\mathrm{x} 3=-1
\end{aligned}
$$

Let:

$$
A=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-1 & 3 & 2 \\
1 & -1 & -1
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad b=\left[\begin{array}{c}
10 \\
5 \\
-1
\end{array}\right]
$$

$$
\mathrm{Ax}=\mathrm{b}
$$

Solution by left division in MATLAB:

$$
\begin{aligned}
& \gg \mathrm{A}=\left[\begin{array}{lll}
3 & 2-1 ;-1 & 3
\end{array} 2 ; 1-1-1\right] ; \\
& \gg \mathrm{B}=[10 ; 5 ;-1] ; \\
& \gg \mathrm{x}=\mathrm{A} \mid \mathrm{B} \\
& \mathrm{x}= \\
& -2.0000 \\
& 5.0000 \\
& -6.0000
\end{aligned}
$$

Solution by Matrix Inverse in MATLAB:

$$
\begin{aligned}
& \gg A=\left[\begin{array}{lll}
3 & 2-1 ;-1 & 3 \\
2 ; 1 & -1 & -1
\end{array}\right] ; \\
& \gg B=[10 ; 5 ;-1] \\
& \gg x=\operatorname{inv}(\mathrm{A}) * B \\
& x= \\
& -2.0000 \\
& 5.0000 \\
& -6.0000
\end{aligned}
$$

Post Lab Questions

1. The command eye(2) generates;
2. If $f=[5,6,7 ; 9,0,1 ; 6,3,2]$ then find $f^{\wedge} \mathbf{2 - 1 / 1 0}$.
3. What do the following basic Matrix functions represent

det	
zeros	
ones	
rand	

Lab Tasks

Task 1

a) Generate a vector of 50 elements having random values between 0 and 50 .
b) What do the following commands generate:

- m=magic(4)
- sum(m)
- $\operatorname{diag}(m)$
- ones(3),ones $(3,2)$
- zeros(3),zeros(3,2)

Task 2

$$
\begin{aligned}
& A=\quad B=\quad C= \\
& \begin{array}{llllllllll}
1 & 2 & 3 & 1 & 1 & 1 & 1 & 2 & 1 & 2 \\
4 & 5 & 6 & 2 & 2 & 2 & & & & \\
7 & 8 & 9 & 3 & 3 & 3 & & & &
\end{array}
\end{aligned}
$$

a) Practice the following Matrix operations on the given Matrices A, B and C :

- $\mathrm{A}+\mathrm{B}$
- A^{\prime}
- $A^{*} B$
- $2^{*} \mathrm{~A}$
- $\mathrm{A} / 2$
- C.^2
b) Find the size of Matrix C and also generate an identity Matrix.

