## **EXPERIMENT # 5**

# TO MEASURE THE POWER AND POWER FACTOR BY THREE VOLTMETER METHOD

| <b>OBJECTIVE:</b> |  |  |  |  |
|-------------------|--|--|--|--|
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |

### **THEORY:**

As we know, <u>wattmeter is used for measurement of power</u> in inductance AC circuits, but in some cases it is not possible to use wattmeter because of their incorrect readings. So in such cases three voltmeters or <u>three ammeter method</u> is used for <u>measurement of power. The</u> Supply voltage higher than normal voltage is required because an additional resistance R is connected in series with the load Z (inductive circuit). Even small errors in measurement of voltages may cause serious errors in the value of power determined by this method.

## **To find Power and Power factor:**



#### **MATHEMATICAL FORM:**

By applying pathagoreous theorem on a triangle ABC we obtain;

$$\begin{aligned} V_1^2 &= V_2^2 + V_3^2 + 2V_2V_3\cos\varphi \\ V_1^2 &= V_2^2 + V_3^2 + 2(IR)V_3\cos\varphi \\ V_1^2 &= V_2^2 + V_3^2 + 2R(V_3I\cos\varphi) \\ (V_1)^2 - (V_2)^2 - (V_3)^2 &= 2V_2V_3\cos\varphi \end{aligned}$$

Power factor of the circuit is given by:

$$\cos \Phi = \frac{V_1^2 - V_2^2 - V_3^2}{2V_2V_3}$$

From the obtained equation we can find the power factor for the provided circuit.

$$(V_1)^2 - (V_2)^2 - (V_3)^2 = 2(IR)V3\cos\Phi$$

$$\frac{(V_1)^2 - (V_2)^2 - (V_3)^2}{2R} = IV_3 \cos\Phi$$

Since Real Power is given as;

$$P = \frac{(V_1)^2 - (V_2)^2 - (V_3)^2}{2R}$$

| API | PARATUS: |      |      |      |
|-----|----------|------|------|------|
| _   |          | <br> |      |      |
| -   |          | <br> | <br> | <br> |
| -   |          | <br> | <br> | <br> |
| -   |          | <br> | <br> | <br> |
| PRC | OCEDURE: |      |      |      |
|     |          |      |      |      |
| _   |          |      |      |      |
| _   |          | <br> | <br> | <br> |
| -   |          | <br> | <br> | <br> |
| -   |          | <br> | <br> | <br> |
| -   |          | <br> | <br> | <br> |
| -   |          | <br> | <br> | <br> |
| -   |          | <br> | <br> | <br> |

| ORSE        | RVATIO | ONS AND C      | ALCULATIO      | ONS:                                               |                                                                  |  |
|-------------|--------|----------------|----------------|----------------------------------------------------|------------------------------------------------------------------|--|
| S.NO        |        | V <sub>2</sub> | V <sub>3</sub> | POWER $P = \frac{(V_1)^2 - (V_2)^2 - (V_3)^2}{2R}$ | POWERFACTOR $\cos \phi = \frac{V_1^2 - V_2^2 - V_3^2}{2V_2 V_3}$ |  |
| 1<br>2<br>3 |        |                |                |                                                    |                                                                  |  |
|             | ı      |                |                | l                                                  |                                                                  |  |
|             |        |                |                |                                                    |                                                                  |  |
|             |        |                |                |                                                    |                                                                  |  |
|             |        |                |                |                                                    |                                                                  |  |
|             |        |                |                |                                                    |                                                                  |  |
|             |        |                |                |                                                    |                                                                  |  |
|             | CLUSIO | <u>N:</u>      |                |                                                    |                                                                  |  |
| CONC        |        |                |                |                                                    |                                                                  |  |
| CONC        |        |                |                |                                                    |                                                                  |  |