EXPERIMENT #2

CONVERSION OF GALVANOMETER TO VOLTMETER

OBJECTIVE:			

GALVANOMETER:

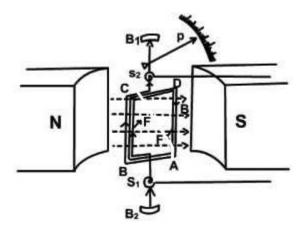
A galvanometer is a type of sensitive ammeter; an instrument for detecting small electric current. It is an analog electromechanical actuator that produces a rotary deflection of some type of pointer in response to electric current through its coil in a magnetic field.

WORKING PRINCIPLE OF GALVANOMETER:

Galvanometer works on the principle of conversion of electrical energy into mechanical energy.

ESSENTIAL PARTS OF GALVANOMETER:

There are five essential parts of a Galvanometer.

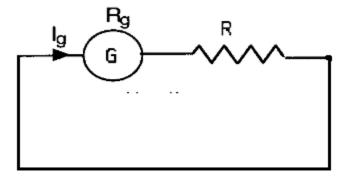

- 1. A U-shaped permanent magnet with concave poles.
- 2. Flat rectangular coil of wire.
- 3. A soft iron cylinder.
- 4. A pointer or needle.
- 5. A scale.

CONSTRUCTION:

The flat rectangular coil of thin enamel insulated wire of suitable number of turns wound on an aluminum frame is suspended between the poles of U-shaped magnet by a thin strip. One end of the wire of coil is soldered to connect to an external terminal. The other end is soldered to a loose and soft spiral. A soft iron cylinder is placed within the frame of coil.

WORKING:

When the current is passed through the coil it becomes a magnet. There is force of attraction is setup between the poles of magnet and coil. As a result a couple is produced in the coil and it is deflected. The current passes through the coil and the angle of deflection has a direct relation with each other. The deflection is measured by a pointer attached to the coil.


WORKING PRINCIPLE OF GALVANOMETER

VOLTMETER:

A voltmeter is an instrument used for measuring electrical potential difference between two points in an electric circuit. Analog voltmeters move a pointer across a scale in proportion to the voltage of the circuit. Digital voltmeters give a numerical display of voltage by use of an analog to digital converter.

CONERSION OF GALVANOMETER TO VOLTMETER:

For the conversion of galvanometer to voltmeter a resistor of high resistance should be connected in series with the galvanometer to form a voltmeter of desired range.

VOLTMETER

To find the value of resistor 'R', use the formula given below.

$$R = \frac{V}{I_g} - R_g$$

V= De	sired range for the v	oltmeter.			
I _g = Cu	rrent passing throug	n galvanometer.			
Rg= Re	esistance of galvanor	neter.			
<u>APPA</u>	ARATUS:				
_					
PROC	CEDURE:				
_					
_					
_					
_					
					
		CIRCU	IT DIAGRAN		
				_	

OBSERVATIONS AND CALCULATIONS:

V	R1	Rg	Rsh	Ig	R

Table 2.1

CONCLUSION:		