
EXPERIMENT#12

TO DESIGN QPSK/4-QAM MODULATION SYSTEM

THEORY:

BITS GENERATOR:

This module of the digital communication system generates the message (signal) in bits. All the data here is in bits which are the input bits.

QPSK MOD:

In Quadrature Phase Shift Keying Modulation module, the modulator converts 1's into +1 and 0's into -1 given that it translates bits into complex bits pair which are then superimposed onto four different phases (0,90,180,270) degrees.

PULSE SHAPING:

In this module, the modulated data is super imposed on a pulse (e.g. Manchester pulse, Raised Cosine, Gaussian pulse etc.) for channel synchronization.

CARRIER MOD:

This is where the carrier modulation takes place i.e. the signal is multiplied with a sinus and cosinus carrier wave and then added up together. The frequency of the carrier wave is

at least ten times the frequency of baseband (message) signal.

TRANSMITTER:

This module transmits the data in the form of electromagnetic waves.

RECEIVER:

This modules receives the transmitted data and processes as designed.

CARRIER DE-MOD:

In this section, the received signal is simultaneously multiplied with sinus and cosinus waves again to translate the original message signal followed by the following processes.

LPF:

The received signal is then low pass filtered for band limiting purposes and removing high frequency components and noise.

MATCHED FILTER:

This module increase the strength of the signal so that the overall SNR (Signal to Noise Ratio) can be improved significantly.

SAMPLING @ nT:

This demodulator samples the matched filter output at the rate nT.It records the peaks of the matched filter output and converts them into bits which are the output bits.

FTW.	ARE USED:
	Lab Task :
	<u>Lau Task .</u>
	Design QPSK Transmitter in MATLAB, generate its pdf and attach the output.
ONCL	LUSION:

Post I ab Questions

a)	Define QPSK Modulation.
L\	What are adventages of ODSV2
D)	What are advantages of QPSK?
c)	What is the difference between QPSK and BPSK?