

Lab #0

GETTING STARTED WITH C++

OBJECTIVE:

__

__

__

C++ is a statically typed, compiled, general-purpose, case-sensitive, free-form programming

language that supports procedural, object-oriented, and generic programming.

C++ is regarded as a middle-level language, as it comprises a combination of both high-level

and low-level language features.

Use of C++:

C++ is used by hundreds of thousands of programmers in essentially every application domain.

C++ is being highly used to write device drivers and other softwares that rely on direct

manipulation of hardware under realtime constraints.

C++ is widely used for teaching and research because it is clean enough for successful teaching

of basic concepts.

C++ Program Structure:

 The C++ language defines several headers, which contain information that is either

necessary or useful to your program. For this program, the header <iostream> is

needed.

 The line using namespace std; tells the compiler to use the std namespace. Namespaces

are a relatively recent addition to C++.

 The next line // main() is where program execution begins. is a single-line comment

available in C++. Single-line comments begin with // and stop at the end of the line.

 The line int main() is the main function where program execution begins.

 The next line cout << "This is my first C++ program."; causes the message "This is

my first C++ program" to be displayed on the screen.

 The next line return 0; terminates main()function and causes it to return the value 0 to

the calling process.

 Use endl, which inserts a new-line character after every line and << operator is being

used to pass multiple values out to the screen.

Practice Program:

#include<iostream>

usingnamespace std;

// main() is where program execution begins.

int main()

{

 cout <<"Hello World";// prints Hello World

return0;

}

Semicolons & Blocks in C++:

In C++, the semicolon is a statement terminator. That is, each individual statement must be

ended with a semicolon. It indicates the end of one logical entity.

For example, following are three different statements:

x = y;

y = y+1;

add(x, y);

A block is a set of logically connected statements that are surrounded by opening and closing

braces. For example:

{

 cout <<"Hello World";// prints Hello World

return0;

}

C++ does not recognize the end of the line as a terminator. For this reason, it does not matter

where on a line you put a statement. For example:

x = y;

y = y+1;

add(x, y);

is the same as

x = y; y = y+1; add(x, y);

C++ Keywords:

The following list shows the reserved words in C++. These reserved words may not be used as

constant or variable or any other identifier names.

Asm Else new This

Auto enum operator Throw

Bool explicit private True

break export protected Try

case extern public typedef

catch False register Typeid

char float reinterpret_cast typename

class For return Union

const friend short unsigned

const_cast goto signed Using

continue If sizeof virtual

default inline static Void

delete Int static_cast volatile

do Long struct wchar_t

double mutable switch While

dynamic_cast namespace template

From greatest to smallest priority, C++ operators are evaluated in the following order:

Level Precedence group Operator Description Grouping

1 Scope :: scope qualifier
Left-to-

right

2 Postfix (unary)

++ -- postfix increment / decrement

Left-to-

right

() functional forms

[] subscript

. -> member access

3 Prefix (unary)

++ -- prefix increment / decrement

Right-to-

left

~ ! bitwise NOT / logical NOT

+ - unary prefix

& * reference / dereference

new delete allocation / deallocation

sizeof parameter pack

(type) C-style type-casting

4 Pointer-to-member .* ->* access pointer
Left-to-

right

5 Arithmetic: scaling * / % multiply, divide, modulo
Left-to-

right

6 Arithmetic: addition + - addition, subtraction
Left-to-

right

7 Bitwise shift <<>> shift left, shift right
Left-to-

right

8 Relational <><= >= comparison operators
Left-to-

right

9 Equality == != equality / inequality
Left-to-

right

10 And & bitwise AND
Left-to-

right

11 Exclusive or ^ bitwise XOR
Left-to-

right

12 Inclusive or | bitwise OR
Left-to-

right

13 Conjunction && logical AND
Left-to-

right

14 Disjunction || logical OR
Left-to-

right

15
Assignment-level

expressions

= *= /= %= += -

=

>>= <<= &= ^=

|=

assignment / compound

assignment
Right-to-

left

?: conditional operator

16 Sequencing , comma separator
Left-to-

right

Bitwise operators (&, |, ^, ~, <<, >>)

Bitwise operators modify variables considering the bit patterns that represent the values they

store.

Operator Equivalent Description

& AND Bitwise AND

| OR Bitwise inclusive OR

^ XOR Bitwise exclusive OR

~ NOT Unary complement (bit inversion)

<< SHL Shift bits left

>> SHR Shift bits right

Relational and comparison operators (==, !=, >, <, >=, <=)

Two expressions can be compared using relational and equality operators. For example, to know

if two values are equal or if one is greater than the other.

The result of such an operation is either true or false (i.e., a Boolean value).

The relational operators in C++ are:

operator Description

== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

 A comment can also start with //, extending to the end of the line. For example:

#include<iostream>
usingnamespace std;
main()
{
cout <<"Hello World";// prints Hello World
return0;
}

When the above code is compiled, it will ignore // prints Hello World and final executable will

produce the following result:

HelloWorld

Within a /* and */ comment, // characters have no special meaning. Within a // comment, /* and

*/ have no special meaning. Thus, you can "nest" one kind of comment within the other kind.

For example:

/* Comment out printing of Hello World:

cout << "Hello World"; // prints Hello World

*/

Variable Definition in C++:

A variable definition means to tell the compiler where and how much to create the storage for

the variable. A variable definition specifies a data type, and contains a list of one or more

variables of that type as follows:

type variable_list;

Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or any

user-defined object, etc., and variable_list may consist of one or more identifier names

separated by commas. Some valid declarations are shown here:

int i, j, k;

char c, ch;

float f, salary;

double d;

 The line int i, j, k; both declares and defines the variables i, j and k; which instructs the

compiler to create variables named i, j and k of type int.

 Variables can be initialized (assigned an initial value) in their declaration. The initializer

consists of an equal sign followed by a constant expression as follows:

type variable_name = value;

Some examples are:

externint d =3, f =5;// declaration of d and f.

int d =3, f =5;// definition and initializing d and f.

char x ='x';// the variable x has the value 'x'.

Without an initializer: variables with static storage duration are implicitly initialized with

NULL (all bytes have the value 0); the initial value of all other variables is undefined.

Variable Declaration in C++:

A variable declaration provides assurance to the compiler that there is one variable existing with

the given type and name so that compiler proceed for further compilation without needing

complete detail about the variable.

Example

Try the following example where a variable has been declared at the top, but it has been defined

inside the main function:

#include<iostream>

usingnamespace std;

// Variable declaration:

externint a, b;

externint c;

externfloat f;

int main ()

{

// Variable definition:

int a, b;

int c;

float f;

// actual initialization

 a =10;

 b =20;

 c = a + b;

 cout << c << endl ;

 f =70.0/3.0;

 cout << f << endl ;

return0;

}

When the above code is compiled and executed, it produces the following result:

30

23.3333

Local Variables:

Variables that are declared inside a function or block are local variables. They can be used only

by statements that are inside that function or block of code. Local variables are not known to

functions outside their own. Following is the example using local variables:

#include<iostream>

usingnamespace std;

int main ()

{

// Local variable declaration:

int a, b;

int c;

// actual initialization

 a =10;

 b =20;

 c = a + b;

 cout << c;

return0;

}

Global Variables:

Global variables are defined outside of all the functions, usually on top of the program. The

global variables will hold their value throughout the life-time of your program.

A global variable can be accessed by any function. That is, a global variable is available for use

throughout your entire program after its declaration. Following is the example using global and

local variables:

#include<iostream>

usingnamespace std;

// Global variable declaration:

int g;

int main ()

{

// Local variable declaration:

int a, b;

// actual initialization

 a =10;

 b =20;

 g = a + b;

 cout << g;

return0;

}

Lab Task

Task No 1

a) What is the output of the following program?

#include<iostream>

usingnamespace std;

main()

{

int i =1, j =2, k =3, r;

r =(i, j, k);

cout<<r<<endl;

}

a) What is the output of the following program?

#include<iostream>

usingnamespace std;

main()

{

intconst a =5;

a++;

cout<<a;}

Task 2

a) Write a program that adds and subtracts two integers using variable int.

b) Write a program that generates an array with size 10.

	Use of C++:
	C++ Program Structure:
	Semicolons & Blocks in C++:
	C++ Keywords:
	Bitwise operators (&, |, ^, ~, <<, >>)
	Relational and comparison operators (==, !=, >, <, >=, <=)

	Variable Definition in C++:
	Variable Declaration in C++:
	Example
	Local Variables:
	Global Variables:

