Lab \# 9

Convolution of signals.

Objective:

LTI systems:

- Systems that are both linear and time invariant are called LTI systems.
- The behavior of LTI systems is completely characterized by their impulse response.
- The input and output of an LTI system is related by convolution sum/integral.

Impulse Response:

- Impulse response ' $\mathrm{h}[\mathrm{n}]$ ', is the output of an LTI system, when the input is a unit impulse.
- Given the impulse response, we can find the output for any input using convolution.

Difference equation:

- A very common representation of LTI systems is in the form of difference equation.
- The general difference equation is Σ aky[n-k] $=\Sigma$ bkx[n-k]

Example:

for , $\mathrm{y}[\mathrm{n}]-5 / 6 y[\mathrm{n}-1]+1 / 6 \mathrm{y}[\mathrm{n}-2]=1 / 3 \mathrm{x}[\mathrm{n}-1]$
$\mathrm{a} 0=1, \mathrm{a} 1=-5 / 6, \mathrm{a} 2=1 / 6$
and
$\mathrm{bo}=0, \mathrm{~b} 1=1 / 3$
Plot the impulse response of the following difference equation

- $y[n]-5 / 6 y[n-1]+1 / 6 y[n-2]=1 / 3 x[n-1]$
$1-a=\left[\begin{array}{lll}1 & -5 / 6 & 1 / 6\end{array}\right]$;
$2-b=\left[\begin{array}{ll}0 & 1 / 3\end{array}\right]$;
$3-\quad[H, T]=i m p z(b, a) ;$
4-stem(T, H);

Convolution

- Consider a discrete time system with input $\mathrm{x}[\mathrm{n}]$ and output $\mathrm{t}[\mathrm{n}]$.
- When Impulse response is given we can find out the system output by following relation

$$
\begin{aligned}
& y[n]=x[n] * h[n] \\
& y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\end{aligned}
$$

For continuous signal, output is computed through following relation.

$$
y(t)=\int_{-\infty}^{\infty} x(T) h(t-T) d T
$$

- Here $\mathrm{y}[\mathrm{n}]$ is the output signal, $\mathrm{x}[\mathrm{n}]$ is the input signal, and $\mathrm{h}[\mathrm{n}]$ is the impulse response of the LTI system.
- In MATLAB use the instruction ' $\mathbf{y}=\mathbf{\operatorname { c o n v }}(\mathbf{x}, \mathbf{h})$ ' to perform convolution.
- It assumes that the time increment is the same for both signals.

Convolution using Matlab:

- To perform discrete time convolution, $\mathrm{x}[\mathrm{n}] * \mathrm{~h}[\mathrm{n}]$, define the vectors x and h with elements in the sequences $x[n]$ and $h[n]$
- Then use the command $\mathrm{y}=\operatorname{conv}(\mathrm{x}, \mathrm{h})$ This command assumes that the first element in x and the first element in h correspond to $\mathrm{n}=0$, so that the first element in the resulting output vector corresponds to $\mathrm{n}=0$.
- If this is not the case, then the output vector will be computed correctly, but the index will have to be adjusted.
- The command Conv () can also be used to multiply polynomials.
- Suppose the coefficients of the polynomial a are given in vector A and that of b are given in B. then coefficients of the output polynomial can be found out as:

For Example
$a(s)=S+1$
$b(s)=s+2$
then
$\mathrm{A}=\left[\begin{array}{ll}1 & 1\end{array}\right]$;
$B=\left[\begin{array}{ll}1 & 2\end{array}\right]$;
$a b=\operatorname{conv}(A, B)$
output comes out to be
$a b=\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]$
Example:
Given the following input signal for discrete LTI system and impulse response.
$x[n]=[1,2,1,2,1,1]$
$h[n]=[1,2,-1,1,3]$
Code to find the convolved signal is given below.

```
x=[1,2,1,2,1,1];
h=[1,2,-1,1,3];
y=conv(x,h);
subplot(311);stem(x);title('Input Signal');
subplot(312);stem(h);title('Impulse Response');
subplot(313);stem(y);title('output Signal');
```


If $x[n]$ and $h[n]$ are of different lengths or different starting points then the output will be computed correctly but the indices would have to be adjusted. For example: if $\mathrm{x}[\mathrm{n}]$ starts from $\mathrm{n}=-1$ and $\mathrm{h}[\mathrm{n}]$ starts from $\mathrm{n}=-3$ then the output signal will start from $n=-4$.

Convolve the following two sequences in MATLAB.

1. $\mathrm{h}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right.$ 4];
2. $\operatorname{subplot}(3,1,1)$
3. stem(h)
4. $\mathrm{x}=\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$;
5. subplot($3,1,2$)
6. stem(x)
7. $\mathrm{y}=\operatorname{conv}(\mathrm{x}, \mathrm{h})$;
8. subplot($3,1,3$)
9. stem (y)

NOTE

- MATLAB assumes that both the convolving signals are starting from zero index, hence the time/sample no. of the output signal is not correct always
- The input signals are finite-length, so the result of the convolution should have a length equal to the sum of the lengths of the inputs- which turns out to be:

Length of $\mathrm{y}=$ length of $(\mathrm{x})+$ length of $(\mathrm{h})-1$ and the starting index for y will be the sum of starting indices of x and h

Post Lab Questions

a) What is an LTI System?
\qquad
\qquad
\qquad
b) Define Convolution.
c) Show the following with the help of a block diagram:
i. $\quad \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})$
ii. $\quad \mathrm{yn})=\mathrm{x}(\mathrm{n}) * \mathrm{~h}(\mathrm{n})$

Lab Tasks

Task 1

a) Find the output of the LTI system when $\mathrm{x}(\mathrm{n})=\{0,12,3,4\}$ and $h(n)=\{0,1,2,3\}$
b) Convolution is associative. Given the three signals $x 1[n], x 2[n]$, and $\mathrm{x} 3[\mathrm{n}]$ as:
$\mathrm{x} 1=[3,1,1]$
$\mathrm{x} 2=[4,2,1]$
$\mathrm{x} 3=[3,2,1,2,3]$
Show that $\underline{(\mathbf{x} 1 * \mathbf{x} 2) * \mathbf{x} 3=\mathbf{x} \mathbf{1}^{*}(\mathbf{x} 2 * \mathbf{x} \mathbf{3})}$
c) Convolution is commutative. Given x and as:
$\mathrm{x}=[1,3,2,1]$
$\mathrm{h}=[1,1,2]$
$\underline{\text { Show that } x^{*} h=h * x}$

Task 2

a) Find the output signal $\mathrm{y}[\mathrm{n}]$ for any range of ' n ' using convolution, for the following case: (assume $-10 \leq n \leq 10$)
i. $\quad h[n]=5(-1 / 2)^{n} u[n], \quad x[n]=(1 / 3)^{n} u[n]$

