Linear Algebra

Summer Final Exam
Total: 80 Marks

For Students who have missed Midterm Exam

Note:

- If your student ID is e.g. 14589 then IDI $=1, I D 2=4, I D 3=5$ etc
- Submission time 25-09-2020 before 6:00 pm (3 Hrs)

Question No: 1
10 marks
Solve the system of equations that corresponds to this augmented Matrix

$$
\left[\begin{array}{cccc}
1 & -3 & 4 & - \text { ID2 } \\
3 & -7 & 7 & - \text { ID4 } \\
-4 & 6 & -1 & \text { ID3 }
\end{array}\right]
$$

Question No: 2
20 marks
a) Find Inverse of a Matrix

$$
\left[\begin{array}{ccc}
\text { ID3 } & -1 & 0 \\
0 & 1 & \text { ID3 } \\
1 & 1 & 0
\end{array}\right]
$$

b) Find an echelon form for the below matrix using row operations

$$
\left[\begin{array}{ccc}
1 & \text { ID3 } & 8 \\
2 & \text { ID4 } & -1 \\
-3 & 0 & 0 \\
1 & - \text { ID3 } & 16
\end{array}\right]
$$

Question No: 3
10 marks
Find the eigenvalues of A

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -17 & 8
\end{array}\right]
$$

Question No. 4
Find a matrix P that diagonalizes the below matrix

$$
A=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

Evaluate $\operatorname{det}(\mathrm{A})$

$$
A=\left[\begin{array}{ccc}
0 & 1 & 5 \\
3 & -6 & 9 \\
2 & 6 & 1
\end{array}\right]
$$

Question No. 6

20 marks

What are the four main things we need to define for a vector space? Which of the following is a vector space over R ? For those that are not vector spaces, modify one part of the definition to make it into a vector space.
a. $\quad \mathrm{V}=\{2 \times 2$ matrices with entries in R$\}$, usual matrix addition, and

$$
k \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
k & a \\
k c & d
\end{array}\right) \text { for } k \in R
$$

b. $\quad \mathrm{V}=\{$ Polynomials with complex coefficients of degrees $\leq 3\}$, with usual addition and scalar multiplication of polynomials.

