

	Department of Civil	Engineerin	g, Universi	ty of Engine	eering and	Technology	/ Peshawar		
		St	teps	s In	DDN	1			
• Ste	ep 01: Size	S							
•	ACI table 8.3	.1.1 is ι	used for	r finding	g the sla	ab thick	ness.		
	Table 8 stresse (in.) ^[1]	.3.1.1— ed two-v	Minimu way slal	m thick os withe	iness of out inte	f nonpro rior bea	e- Ims		
		Witho	Without drop panels ^[3] With drop pa				els ^[3]		
		Exterior panels		Interior panels	Exterior panels		Interior panels		
	<i>f</i> _y , psi ^[2]	Without edge beams	With edge beams ^[4]	- F	Without edge beams	With edge beams ^[4]	Passa		
	40,000	l _n /33	$\ell_n/36$	$\ell_n/36$	l _n /36	$\ell_n/40$	$\ell_n/40$		
	60,000	$\ell_n/30$	<i>ℓ</i> "/33	ℓ"/33	<i>ℓ</i> "/33	$\ell_n/36$	l_n/36		
	75,000	$\ell_n/28$	$\ell_n/31$	ℓ"/31	<i>ℓ</i> "/31	<i>ℓ</i> "/34	ℓ"/34		
	h _{min} = 5 inches	s (slabs [,]	without o	drop pan	iels)				
•	h _{min} = 4 inches (slabs with drop panels)								
Prof. Dr. Qaisar Ali	CE-416: Reinforced Concrete Design – II 14								

Department of Civ	il Enginee	ring, Univ	ersity of Er	ngineering	and Techr	ology Pes	hawar		
Example 1									
• Step 01: Si	zes								
ACI table thickness.	8.3.1.1	1 is u	ised fo	or findi	ng flat	plate	and f	flat slab	
	Table 8 stresse (in.) ^[1]	.3.1.1— ed two-v	Minimu way slal	m thick os withe	ness of out inte	nonpre rior bea	e- ims		
	Without drop panels ¹³ With drop panels ¹³								
		Exterior panels		Interior panels	Exterior panels		Interior panels		
	<i>f</i> _y , psi ^[2]	Without edge beams	With edge beams ^[4]		Without edge beams	With edge beams ^[4]			
	40,000	<i>ℓ</i> _n /33	ℓ"/36	ℓ"/36	l_n/36	$\ell_n/40$	$\ell_n/40$		
	60,000	(,/30)	ℓ"/33	(1,/33)	<i>ℓ</i> "/33	<i>l</i> "/36	l"/36		
	75,000	<i>ℓ</i> "/28	<i>ℓ</i> _n /31	ℓ"/31	<i>ℓ</i> _n /31	<i>ℓ</i> _n /34	ℓ"/34		

 Maximum spacing and minimum reinforcement requirement: Maximum spacing (ACI 8.7.2.2): s_{max} = 2h_f in each direction. Minimum Reinforcement (ACI 24.4.3.2): A_{smin} = 0.0018 bh_f for grade 60. A_{smin} = 0.002 bh_f for grade 40 and 50. 	(Ger	neral Requirements of ACI Code for two way slab)	
 Maximum spacing (ACI 8.7.2.2): s_{max} = 2h_f in each direction. Minimum Reinforcement (ACI 24.4.3.2): A_{smin} = 0.0018 bh_f for grade 60. A_{smin} = 0.002 bh_f for grade 40 and 50. 	•	Maximum spacing and minimum reinforcement requirement:	
 s_{max} = 2h_f in each direction. Minimum Reinforcement (ACI 24.4.3.2): A_{smin} = 0.0018 bh_f for grade 60. A_{smin} = 0.002 bh_f for grade 40 and 50. 		Maximum spacing (ACI 8.7.2.2):	
 Minimum Reinforcement (ACI 24.4.3.2): A_{smin} = 0.0018 bh_f for grade 60. A_{smin} = 0.002 bh_f for grade 40 and 50. 		• s _{max} = 2h _f in each direction.	
 A_{smin} = 0.0018 bh_f for grade 60. A_{smin} = 0.002 bh_f for grade 40 and 50. 		Minimum Reinforcement (ACI 24.4.3.2):	
• $A_{smin} = 0.002 \text{ bh}_{f}$ for grade 40 and 50.		• $A_{smin} = 0.0018 \text{ bh}_{f}$ for grade 60.	
		• $A_{smin} = 0.002 \text{ bh}_{f}$ for grade 40 and 50.	

