

	Department of Civ	ni Engineering, University c	or Engineering ar	a rechnology Peshawar
		Design	Probl	em
• 5	Slab Design	1		
	• <u>Step No. 0</u> 2	2: Loads		
		Table: I	Dead Load	S.
	Material	Thickness (in)	γ (kcf)	Load = thickness × γ (ksf)
	Slab	6	0.15	(6/12) × 0.15 = 0.075
	Mud	3	0.12	(3/12) × 0.12 = 0.03
	Tile	2	0.12	(2/12) × 0.12= 0.02

Depa	artment of Civil Engineering, University of Engineering and Technology Peshawar
	Design Problem
• Slab	Design
• <u>St</u>	ep No. 04: Design
	Main reinforcement spacing:
	 Maximum spacing for main steel reinforcement in one way slab according to ACI 7.6.5 is minimum of:
	 3h_f = 3 × 6 =18" 18"
	• Finally use, #3 @ 9" c/c.
Brof Dr. Opiger Ali	Dejeferend Congrete Design II

	Department of Civil Engineering, University of Engineering and Technology Peshawar	٢
	Design Problem	
• Bea	am Design	
•	Step No. 04: Design	
	Design for flexure (for positive moment)	
	• Step (a): According to ACI 8.12, b _{eff} for T-beam is minimum of:	
	• 16h _f + b _w = 16 × 6 + 12 =108"	
	 (c/c span of beam)/4 =(30.75'/4) × 12 =92.25" 	
	 c/c spacing between beams =10' × 12 =120" 	
	• So b _{eff} = 92.25"	
Prof. Dr. Qaisar Ali	Reinforced Concrete Design – II	17

Departm	ent of Civil Engineering, University of Engineering and Technology Peshawar	\odot
	Design Problem	
• Beam D	Design	
• <u>Step</u>	No. 04: Design	
• [Design for flexure (for interior negative moment)	
	- $b_w = 12"$ instead of b_{eff} for calculation of "a" because of flange in tension.	
	• M _u = 2749 in-kip; h = 24"; d = 21"	
	• Let a = 0.2d = 0.2 × 21" = 4.2"	
	$A_s = M_u / {\Phi f_y (d-a/2)} = 2749 / {0.9 \times 40 \times (21-4.2/2)} = 3.65 in^2$	
	Re-calculate "a":	
	a =A _s f _y / (0.85f _c 'b _{eff}) =3.65× 40/ (0.85 × 3 × 12) = 4.77"	
	• After trials $\rm A_s$ = 4.17 in^2 $\rm \{A_{smax}$ = 5.11 in^2 $\rm ;A_{smin}$ = 1.26 in^2 $\rm \}$	
	• Therefore A _s = 4.17 in ² {6 #8 bars}	
Prof. Dr. Qaisar Ali	Reinforced Concrete Design – II	19

• Bo	am D	esian	3			
• 00	<u>Step</u>	No. 04: Design				
	• [<u>)esign for shear</u>				
Location	V _u (kip)	$\Phi V_{c} = \Phi 2 \sqrt{f'_{c}} b_{w} d$ (kips)	Reinforcement required?	$s_d = \Phi A_v f_y d/(V_u - \Phi V_c)$	S _{max,} ACI	Governing s
Exterior	31.03	20.7	Yes	13″	10.5″	10.5″
	35.68	20.7	Yes	9″	10.5″	9″
Interior						

	Department of Civil Engineering, University of Engineering and Technology Peshawar	Ô
	Design Problem	
• Be	am Design	
•	Step No. 04: Design	
	Design for shear	
	<u>Other checks</u>	
	<u>Check for depth of beam:</u>	
	• $\Phi V_{s} \le \Phi 8 \sqrt{f'_{c}} b_{w} d$ (ACI 11.4.7.9)	
	• $\Phi 8 \sqrt{f'_c} b_w d = 0.75 \times 8 \times \sqrt{3000} \times 12 \times 21/1000 = 82.4 \text{ kips}$	
	• $\Phi V_s = (\Phi A_v f_y d)/s_d$	
	= (0.75 × 0.22 × 40 × 21)/9 = 15.4 kip < 82.4 kip, O.K.	
	• So depth is O.K. If not, increase depth of beam.	
Prof. Dr. Qaisar Ali	Reinforced Concrete Design – II	21

Departme	ent of Civil Engineering, University of Engineering and Technology Peshawar
	Design Problem
 Beam D 	esign
• <u>Step</u>	No. 04: Design
• [Design for shear
	<u>Reinforcement provision</u>
	• It will be practically more feasible to provide # 3, 2 legged @ 9" c/c throughout, starting at $s_d/2 = 9/2 = 4.5$ " from the face of the support at both ends.
Prof. Dr. Qaisar Ali	Reinforced Concrete Design – II 23

Dep	artment of Civil Engineering, University of Engineering and Technology Peshawar	\bigcirc
	Design Problem	
• Girde	er Design	
• <u>Si</u>	tep No. 01: Sizes	
•	Minimum thickness of beam (simply supported) = $h_{min} = 1/18.5$	
	<i>l</i> = 30.75′	
	Depth (h) = $(30.75/18.5) \times (0.4 + f_y/100000) \times 12 = 15.95''$ (Minimum by ACI 9.5.2.2).	
•	Take h = 3' = 36"	
	d = h – 3 = 33"	
	b _w = 18" (assumed)	
Prof. Dr. Qaisar Ali	Reinforced Concrete Design – II	25

	Department	t of Civil En	gineering,	Universit	y of Engine	eering and	Technolog	ıy Peshav	var	\bigcirc
		C	Jes	ign	Pr	oble	em			
• Gi	rder De	esign								
	• <u>Ste</u>	p No. 0	4: Des	<u>ign</u>						
	•	Design	for Fle	<u>xure</u>						
		• Ac	cording	to ACI 8	12, b _{eff} is	s minimu	m of:			
		• 16	h _f + b _{wg}	=16 × 6 ·	+ 18 = 11	4″				
		• (c/	c span o	of girder)	4 = (30.7	75/4) × 12	2 = 92.25	"		
		• c/c	spacin	g betwee	n girder	= not app	licable			
		• b _{et}	_f = 92.28	5″						
	Section	M _u (kip-ft)	d (in.)	b (in.)	A _s (in²)	A _{smin} (in²)	A _{smax} (in²)	Bar used	# of bars	
	Exterior +	668.5	33	92.25	6.87	2.97	11.88	#8	9 (5 +4)	
	Interior -	731.95	33	18	8.30	2.97	11.88	#8	12 (6 +6)	
	Interior +	190.55	33	92.25	1.93	2.97	11.88	#8	4	
Prof. Dr. Qaisar Ali			F	einforced	Concrete	Design – I	I			33

	Department of Civil Engineering, University of Engineering and Technology Peshawar	٢
	Design Problem	
• Gir	der Design	
•	Step No. 04: Design	
	Design for Shear:	
	Other checks	
	Check for depth of girder:	
	• $\Phi V_{s} \le \Phi 8 \sqrt{f'_{c}} b_{w} d$ (ACI 11.4.7.9)	
	• $\Phi 8 \sqrt{f'_c} b_w d = 0.75 \times 8 \times \sqrt{3000} \times 18 \times 33/1000 = 195.20 \text{ kips}$	
	• $\Phi V_s = (\Phi A_v f_y d)/s_d$	
	= (0.75 × 0.22 × 40 × 33)/3 = 72.60 kip < 195.20 kip, O.K.	
	• So depth is O.K. If not, increase depth of beam.	
Prof. Dr. Qaisar Ali	Reinforced Concrete Desian – II	37

Depa	rtment of Civil Engineering, University of Engineering and Technology Peshawar	O
	Design Problem	
Colum	in Design	
•	<u>Tie Bars:</u>	
	 Using 3/8" Φ (#3) tie bars for 3/4" Φ (#6) main bars (ACI 7.10.5), 	
	Spacing for Tie bars according to ACI 7.10.5.2 is minimum of:	
	• 16 × dia of main bar =16 × 3/4 =12" c/c	
	• 48 × dia of tie bar = 48 × (3/8) =18" c/c	
	 Least column dimension =18" c/c 	
	 Finally use #3, tie bars @ 9" c/c 	
Prof. Dr. Qaisar Ali	Reinforced Concrete Desian – II	41

